. 24/7 Space News .
Newly Seen Force May Help Gravity In Star Formation

This stunning image comes from the R Corona Australis star-forming region, about 500 light years from Earth. This image was created with the University of Hawaii 88-inch telescope in the "near" infrared waveband, which is slightly lower in energy than what is visible to our eyes. Many protostars (reddish) and young stars (bright white) are seen here. [credit: UH88 / Nedachi et al.]
Greenbelt MD (SPX) Mar 02, 2005
Scientists have pierced through a dusty stellar nursery to capture the earliest and most detailed view of a collapsing gas cloud turning into a star, analogous to a baby's first ultrasound.

The observation, made primarily with the European Space Agency's XMM-Newton observatory, suggests that some unrealized, energetic process - likely related to magnetic fields - is superheating the surface of the cloud core, nudging the cloud ever closer to becoming a star.

The observation marks the first clear detection of X-rays from a cold precursor to a star, called a Class 0 protostar, far earlier in a star's evolution than most experts in this field thought possible. The surprise detection of X-rays from such a cold object reveals that matter is falling toward the protostar core 10 times faster than expected from gravity alone.

"We are seeing star formation at its embryonic stage," said Dr. Kenji Hamaguchi, a NASA-funded researcher at NASA Goddard Space Flight Center in Greenbelt, Md., lead author on a report in The Astrophysical Journal.

"Previous observations have captured the shape of such gas clouds but have never been able to peer inside. The detection of X-rays this early indicates that gravity alone is not the only force shaping young stars."

Supporting data came from NASA's Chandra X-ray Observatory, Japan's Subaru telescope in Hawaii, and the University of Hawaii 88-inch telescope.

Hamaguchi's team discovered X-rays from a Class 0 protostar in the R Corona Australis star-forming region, about 500 light years from Earth.

Class 0 is the youngest class of protostellar object, about 10,000 to 100,000 years into the assimilation process. The cloud temperature is about 400 degrees below zero Fahrenheit (minus 240 Celsius). After a few million years, nuclear fusion ignites at the center of the collapsing protostellar cloud, and a new star is formed.


A star is born... well, in another million years. The blue dots are protstars seen in X-ray light. This is the same as image 2, only without the labels. [credit: ESA/XMM/ Hamaguchi et al.]
The team speculates that magnetic fields in the spinning protostar core accelerate infalling matter to high speeds, producing high temperatures and X-rays in the process. These X- rays can penetrate the dusty region to reveal the core.

"This is no gentle freefall of gas," said Dr. Michael Corcoran of NASA Goddard, a co-author on the report. "The X-ray emission shows that forces appear to be accelerating matter to high speeds, heating regions of this cold gas cloud to 100 million degrees Fahrenheit. The X-ray emission from the core gives us a window to probe the hidden processes by which cold gas clouds collapse to stars."

Hamaguchi likened the generation of X-rays in the Class 0 protostar to what happens during solar flares on our Sun. The solar surface has lots of magnetic loops, which sometimes get tangled and release large amounts of energy.

This energy can accelerate atoms to velocities of 7 million miles an hour. The particles smash against the solar surface and create X-rays. Similarly tangled magnetic fields might be responsible for X-rays observed by Hamaguchi and his collaborators.

The detection of magnetic fields from an extremely young Class 0 protostar provides a crucial link in understanding the star formation process, because magnetic field loops are believed to play a critical role in moderating the cloud collapse.

The team used XMM-Newton for its powerful light-collecting capability, necessary for this type of observation where so few X-rays penetrate the dusty region, and the exquisite resolving power of Chandra to pinpoint the X-ray source position. The team used the infrared Subaru telescope to determine the protostar's age.

"The age is based on a well-established chart of spectra, or characteristics of the infrared light, as the protostar evolves over the course of a million years," said Ko Nedachi, a doctoral student at the University of Tokyo who led the Subaru observation.

The science team also includes Drs. Rob Petre and Nicholas White of NASA Goddard, Dr. Beate Stelzer of the Astronomy Observatory in Palermo, Italy, and Dr. Naoto Kobayashi of University of Tokyo. Kenji Hamaguchi is funded through the National Research Council; Michael Corcoran is funded through Universities Space Research Association.

Related Links
XMM Magnetic Starbirth
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Even In Heaven, Stars Can Only Get So Big
Ann Arbor MI (SPX) Feb 04, 2005
New research from the University of Michigan shows that there may be an upper limit to the mass of a star, somewhere around 120 to 200 times bigger than our sun.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.