. 24/7 Space News .
Giving Up The Galactic Ghost

Stephan's Quintet with red highlighting star-forming regions. Stephan's Quintet was imaged by the Gemini Observatory using the Multi-Object Spectrograph on Gemini North. The interacting members of the cluster are almost 300 million light years away. The galaxy NGC 7320 (top-center) is thought by most astronomers to be in the foreground (about 8-times closer) and is distinguished in this image by multiple red blobs indicating hydrogen clouds where stars are forming. Orientation: North-bottom, East-right. Credit: Gemini/NSF/USRA
by Astrobiology Magazine
Moffett Field CA (SPX) Sep 08, 2004
A stunning image released by the Gemini Observatory captures the graceful interactions of a galactic ballet, on a stage some 300 million light years away, that might better be described as a contortionist's dance.

The galaxies, members of a famous troupe called Stephan's Quintet, are literally tearing each other apart.

Their shapes are warped by gravitational interactions occurring over millions of years. Sweeping arches of gas and dust trace the interactions and possible ghost-like passage of the galaxies through one another.

The ongoing dance deformed their structures while spawning a prolific fireworks display of star formation fueled by clouds of hydrogen gas that were shocked into clumps to form stellar nurseries.

This unprecedented image of the cluster provides a unique combination of sensitivity, high resolution and field of view.

"It doesn't take long to reach an incredible depth when you have an 8-meter mirror collecting light under excellent conditions," said Travis Rector of the University of Alaska, Anchorage who helped obtain the data with the Gemini North Telescope on Mauna Kea.

"We were able to capture these galaxies at many different wavelengths or colors. This allowed us to bring out some remarkable details in the final color image that have never been seen before in one view."

One striking element of the image is a collection of vibrant red clumps that mark star-forming regions within a galaxy called NGC 7320.

Although its relation to the other galaxies in the cluster has been the subject of some controversy, most astronomers now think that the galaxy leads a relatively tranquil existence in the foreground, safely isolated from the violent quarrels of the more distant cluster.

Spectroscopic data show that NGC 7320 has an apparent velocity away from us of about 800 kilometers per second. In contrast, the rest of the group is being carried away from us by the expansion of the universe at over 6,000 kilometers per second.

Using current models for the expanding universe, this would put the bulk of the cluster almost 8 times farther away from us than NGC 7320.

The vivid red patches scattered across the spiral arms of NGC 7320 in the new Gemini image provide a dramatic illustration of how these differing apparent velocities can impact our view. NGC 7320 and the other cluster galaxies have regions of intense star formation indicated by glowing clouds of hydrogen gas called HII regions.

These areas appear distinctly red because a selective filter was used which only passes a special color of red light, called hydrogen alpha, that is produced in the HII regions.

In the higher-velocity members of the cluster, prominent HII clumps dominate around the two closely interacting central galaxies but they do not appear red in the image.

In these galaxies, the HII glow was Doppler-shifted beyond the range of the selective filter, and was therefore not detected.

The interacting members of Stephan's Quintet appear destined to continue their dance for millions more years. Eventually, this dance will probably cause some of the galaxies in the cluster to completely lose their current identity, combining into even fewer objects than we see today.

Stephan's Quintet was discovered in 1877 by the French astronomer Edouard Stephan using the Foucault 80-centimeter reflector at the Marseilles Observatory. The cluster is listed in the Hickson Compact Group Catalog as number 92. It has been studied extensively at all wavelengths including imaging by the Hubble Space Telescope.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Astronomers Link Moving Microquasar To Star Cluster
Socorro NM (SPX) Aug 06, 2004
Astronomers studying data from the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes have concluded that a binary pair of stars forming an energetic microquasar was blasted out of the cluster in which it was born by a supernova explosion some 1.7 million years ago. This is the first time that a fast-moving stellar pair has been tracked back to a specific star cluster.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.