Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Hubble's Deepest View Ever of the Universe Unveils Earliest Galaxies

Stunning Desktop Available
  • 1024X768     1280X1024
  • 1800x1200    800X600
  • More at main Hubble Site
  • Baltimore - Mar 09, 2004
    Astronomers at the Space Telescope Science Institute today unveiled the deepest portrait of the visible universe ever achieved by humankind. Called the Hubble Ultra Deep Field (HUDF), the million-second-long exposure reveals the first galaxies to emerge from the so-called "dark ages," the time shortly after the big bang when the first stars reheated the cold, dark universe. The new image should offer new insights into what types of objects reheated the universe long ago.

    This historic new view is actually two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multi-object Spectrometer (NICMOS). Both images reveal galaxies that are too faint to be seen by ground-based telescopes, or even in Hubble's previous faraway looks, called the Hubble Deep Fields (HDFs), taken in 1995 and 1998.

    "Hubble takes us to within a stone's throw of the big bang itself," says Massimo Stiavelli of the Space Telescope Science Institute in Baltimore, Md., and the HUDF project lead. The combination of ACS and NICMOS images will be used to search for galaxies that existed between 400 and 800 million years (corresponding to a redshift range of 7 to 12) after the big bang. A key question for HUDF astronomers is whether the universe appears to be the same at this very early time as it did when the cosmos was between 1 and 2 billion years old.

    The HUDF field contains an estimated 10,000 galaxies. In ground-based images, the patch of sky in which the galaxies reside (just one-tenth the diameter of the full Moon) is largely empty. Located in the constellation Fornax, the region is below the constellation Orion.

    The final ACS image, assembled by Anton Koekemoer of the Space Telescope Science Institute, is studded with a wide range of galaxies of various sizes, shapes, and colors. In vibrant contrast to the image's rich harvest of classic spiral and elliptical galaxies, there is a zoo of oddball galaxies littering the field. Some look like toothpicks; others like links on a bracelet. A few appear to be interacting. Their strange shapes are a far cry from the majestic spiral and elliptical galaxies we see today. These oddball galaxies chronicle a period when the universe was more chaotic. Order and structure were just beginning to emerge.

    Installed in 2002 during the last servicing mission to the Hubble telescope, the ACS has twice the field of view and a higher sensitivity than the older workhorse camera, the Wide Field Planetary Camera 2, installed during the 1993 servicing mission. "The large discovery efficiency of the ACS is now being exploited in sky surveys such as the HUDF," Stiavelli says.

    The NICMOS sees even farther than the ACS. The NICMOS reveals the farthest galaxies ever seen, because the expanding universe has stretched their light into the near-infrared portion of the spectrum. "The NICMOS provides important additional scientific content to cosmological studies in the HUDF," says Rodger Thompson of the University of Arizona and the NICMOS Principal Investigator. The ACS uncovered galaxies that existed 800 million years after the big bang (at a redshift of 7). But the NICMOS may have spotted galaxies that lived just 400 million years after the birth of the cosmos (at a redshift of 12). Thompson must confirm the NICMOS discovery with follow-up research.

    "The images will also help us prepare for the next step from NICMOS on the Hubble telescope to the James Webb Space Telescope (JWST)," Thompson explains. "The NICMOS images reach back to the distance and time that JWST is destined to explore at much greater sensitivity." In addition to distant galaxies, the longer infrared wavelengths are sensitive to galaxies that are intrinsically red, such as elliptical galaxies and galaxies that have red colors due to a high degree of dust absorption.

    The entire HUDF also was observed with the advanced camera's "grism" spectrograph, a hybrid prism and diffraction grating. "The grism spectra have already yielded the identification of about a thousand objects. Included among them are some of the intensely faint and red points of light in the ACS image, prime candidates for distant galaxies," says Sangeeta Malhotra of the Space Telescope Science Institute and the Principal Investigator for the Ultra Deep Field's ACS grism follow-up study. "Based on those identifications, some of these objects are among the farthest and youngest galaxies ever seen. The grism spectra also distinguish among other types of very red objects, such as old and dusty red galaxies, quasars, and cool dwarf stars."

    Galaxies evolved so quickly in the universe that their most important changes happened within a billion years of the big bang. "Where the HDFs showed galaxies when they were youngsters, the HUDF reveals them as toddlers, enmeshed in a period of rapid developmental changes," Stiavelli says.

    Hubble's ACS allows astronomers to see galaxies two to four times fainter than Hubble could view previously, and is also very sensitive to the near-infrared radiation that allows astronomers to pluck out some of the farthest observable galaxies in the universe. This will hold the record as the deepest-ever view of the universe until ESA, together with NASA, launches the James Webb Space Telescope in 2011.

    Though ground-based telescopes have, to date, spied objects that existed just 500 million years after the big bang (at a redshift of 10), they need the help of a rare natural zoom lens in space, called a gravitational lens, to see them. However, the ACS can reveal typical galaxies at these great distances. Even much larger ground-based telescopes with adaptive optics cannot reproduce such a view. The ACS picture required a series of exposures taken over the course of 400 Hubble orbits around Earth. This is such a big chunk of the telescope's annual observing time that Institute Director Steven Beckwith used his own Director's Discretionary Time to provide the needed resources.

    The HUDF observations began Sept. 24, 2003 and continued through Jan. 16, 2004. The telescope's ACS camera, the size of a phone booth, captured ancient photons of light that began traversing the universe even before Earth existed. Photons of light from the very faintest objects arrived at a trickle of one photon per minute, compared with millions of photons per minute from nearer galaxies.

    Just like the previous HDFs, the new data are expected to galvanize the astronomical community and lead to dozens of research papers that will offer new insights into the birth and evolution of galaxies.

    Related Links
    Ultra Deep at Hubble
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express

    The Art Of Deep Space
    Baltimore - Mar 08, 2004
    "Starry Night", Vincent van Gogh's famous painting, is renowned for its bold whorls of light sweeping across a raging night sky. Although this image of the heavens came only from the artist's restless imagination, a new picture from the NASA/ESA Hubble Space Telescope bears remarkable similarities to the van Gogh work, complete with never-before-seen spirals of dust swirling across trillions of kilometres of interstellar space.



    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only






    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








    The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.