. 24/7 Space News .
Biggest Ever Solar Flare Was Even Bigger Than Thought

a pretty picture of a snap back
Washington - Mar 16, 2004
Physicists in New Zealand have shown that last November's record-breaking solar explosion was much larger than previously estimated, thanks to innovative research using the upper atmosphere as a gigantic x-ray detector.

Their findings have been accepted for 17 March publication in Geophysical Research Letters, published by the American Geophysical Union. On 4 November 2003, the largest solar flare ever recorded exploded from the Sun's surface, sending an intense burst of radiation streaming towards the Earth.

Before the storm peaked, x-rays overloaded the detectors on the Geostationary Operational Environmental Satellites (GOES), forcing scientists to estimate the flare's size.

Taking a different route, researchers from the University of Otago used radio wave-based measurements of the x-rays' effects on the Earth's upper atmosphere to revise the flare's size from a merely huge X28 to a "whopping" X45, say researchers Neil Thomson, Craig Rodger, and Richard Dowden.

X-class flares are major events that can trigger radio blackouts around the world and long-lasting radiation storms in the upper atmosphere that can damage or destroy satellites. The biggest previous solar flares on record were rated X20, on 2 April 2001 and 16 August 1989.

"This makes it more than twice as large as any previously recorded flare, and if the accompanying particle and magnetic storm had been aimed at the Earth, the damage to some satellites and electrical networks could have been considerable," says Thomson.

Their calculations show that the flare's x-ray radiation bombarding the atmosphere was equivalent to that of 5,000 Suns, though none of it reached the Earth's surface, the researchers say.

At the time of the flare, the researchers were probing the ionosphere with radio waves as part of a long-term research program. Their new measurement comes from observations of the indirect effects of the increased x-ray radiation on very low frequency (VLF) radio transmissions across the Pacific Ocean from Washington State, North Dakota, and Hawaii to their receivers in Dunedin, New Zealand.

"Increases in x-rays enhance the ionosphere, causing its lowest region to decrease in altitude, which in turn affects the phase of VLF transmissions. Our previous research shows that these phase shifts are proportional to the number of kilometers [miles] by which the ionosphere is lowered," they say.

As the lowering is known to relate directly to the amount of x-ray radiation present, the team could make a new measurement of the flare's size, they say.

"We were at the right place, at the right time with the right knowledge--which was based on nearly 15 years of work by staff and students in the Physics Department's Space Physics Group."

The research would not have been possible, they added, without data provided by the U.S. National Oceanic and Atmospheric Administration (NOAA) Space Environment Center, which came up with the initial X28 estimate.

"We used their solar measurements to calibrate the response of the atmosphere to x-rays, so when this event overloaded the satellite detectors, we were in a unique position to make this measurement.

Given that any future flares are unlikely to be large enough to overload the ionosphere, we believe that our new method has great advantages in determining their size in the event of satellite detector overloads," they say.

Related Links
American Geophysical Union
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

NASA'S Sorce Satellite Celebrates One Year Of Operations
Greenbelt - Feb 20, 2004
Having marked its first anniversary on orbit, NASA's Solar Radiation and Climate Experiment (Sorce) satellite has hit its stride. In concert with other satellites, Sorce's observations of the sun's brightness are helping researchers better understand climate change, climate prediction, atmospheric ozone, the sunburn-causing ultraviolet-B radiation and space weather.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.