Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















Nanoparticles Used In Solar Energy Conversion

By using gallium selenide, Kelley is laying the groundwork for a similar, but more complex and potentially more effective nanoparticle called indium selenide.
Manhattan - Aug 22, 2002
An enormous source of clean energy is available to us. We see it almost every day. It's just a matter of harnessing it. The problem with solar energy is that it has not been inexpensive enough in the past. David Kelley, professor of chemistry at Kansas State University, developed a new type of nanoparticle -- a tiny chemical compound far too small to be seen with the naked eye -- that may reap big dividends in solar power.

Kelley's team is studying the properties and technical problems of gallium selenide nanoparticles. The properties of the nanoparticle change as the size changes. One of those properties is the part of the light spectrum it absorbs.

"You can make dramatically different colors just by changing the size of the nanoparticles," Kelley said.

Kelley is developing nanoparticles that are just the right size for solar cells -- they can absorb all visible light but nothing from the invisible light at the red end of the spectrum, which would reduce voltage.

"The correct-sized nanoparticles look dark red to black. There is an optimum size and that's what you want to shoot for," Kelley said.

Today's solar panels are made with silicon. The silicon usually has impurities, which limits its efficiency. Purifying a chemical is too expensive. For that reason, smaller is better. One can fit as many nanoparticles into a golf ball as one can fit beach balls into the earth.

Only a tiny percentage of a piece of material has impurities. If the entire chunk of material makes one crystal in a solar panel, the crystal will not work. But if that chunk is broken up into 100 tiny nanoparticles, then only the few unlucky nanoparticles with the impurities will not function. All the other nanoparticles will be pure and therefore will work.

Kelley said he is a long way from developing compounds that are comparable to today's silicon solar cells, because the physics of nanoparticles is so poorly understood.

By using gallium selenide, Kelley is laying the groundwork for a similar, but more complex and potentially more effective nanoparticle called indium selenide. It is difficult to make silicon nanoparticles, but indium selenide has great potential for nanoparticle solar cells, Kelley said.

"The idea is to make large, high-output solar voltaic panels that are dirt cheap to produce. It's only then that the price starts to become competitive with burning fossil fuels," Kelley said.

He nearly had to start from scratch. His team invented gallium selenide nanoparticles. Kelley said he knew six years ago that many semiconductor materials had potential use in solar power, but were not being studied because there were no methods to make them into nanoparticles.

"All these really interesting materials were being ignored and I thought it just can't be allowed to stay that way," Kelley said.

The study on the methods to produce the nanoparticles was published in the journal "Nano Letters" this year. The project was funded by the U.S. Department of Energy's Solar Photochemistry Program in Basic Energy Sciences.

Related Links
Kansas State University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Laser-Like Beam May Break Barriers To Technological Progress
Boulder - Jul 24, 2002
Researchers have created a sharply focused, laser-like beam of ultraviolet light using a device that could fit on a dining room table. Scientists and engineers will be able to use this extreme ultraviolet (EUV) light source to measure and manipulate objects at the scale of nanometers (billionth of a meter).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.