. 24/7 Space News .
Robots By Land, Sea, Air

The autonomous Antarctic meteor finder, Nomad, uses artificial intelligence to recognize and classify promising rocks. Credit: Carnegie Mellon.
by Astrobiology Magazine
Moffett Field CA (SPX) Mar 23, 2005
There's still a long way to go before today's robots evolve into practical, everyday technologies, but even now, autonomous robotic vehicles are exploring uncharted or hazardous places, assisting troops in combat and performing household tasks.

In addition to his well-known work on humanoid robots such as Kismet, MIT Professor Rodney Brooks led the development of several robotic vehicles and co-founded a company, iRobot, that develops these machines commercially.

iRobot produces Roomba, a disc-shaped robotic vacuum cleaner for home use, and PackBot, a small, tank-like battlefield robot that can climb stairs and right itself when it flips over.

Troops in Afghanistan use PackBots to explore enemy caves, and soldiers in Iraq use them to detect improvised explosive devices and inspect weapons caches. iRobot has also partnered with John Deere to develop r-Gator, an unmanned jeep that can shuttle supplies to and from combat zones.

"In 20 years, we've gone from robots that can hardly maneuver around objects to ones that can navigate in unstructured environments," said Brooks, director of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

He also pointed to the many applications for labor-saving robots, from autonomous lawnmowers to mobile "assistants" for the elderly. Brooks and his CSAIL colleagues are currently working on an experimental robotic assistant built onto a Segway transporter.

However, smarter, multifunctional robots that operate usefully are still a ways off. They will require advances such as object recognition (for example, the ability to differentiate between a pile of salt and a crumpled ball of white paper), manual dexterity and interfaces that could make a robot as easy to use as a refrigerator.

Then there's the final frontier: space. With funding from NASA, CSAIL is developing prototypes of autonomous vehicles and humanoid robots for exploration on the Moon and Mars.

Professor Chryssostomos Chryssostomidis, director of the MIT Autonomous Underwater Vehicles Laboratory (AUV Lab), envisions "robots filling the vast void of oceans, roaming around, observing, communicating, and reporting back."

His lab has spent the past 15 years developing AUVs that have carried out missions ranging from surveying shipwrecks to testing underwater navigation and communication software.

The lab developed the Odyssey class of submarine-like vessels, which evolved into AUVs produced commercially by BlueFin Robotics, a company that spun out of the AUV Lab and still works closely with it.

BlueFin vehicles aid research, survey offshore oil fields, and assist the U.S. Navy in mine warfare and battlespace preparation.

The next generation of AUVs, said Chryssostomidis, will include smaller, more robust vehicles that could be tossed out of an aircraft; hovering AUVs that inspect ship hulls for mines; biomimetic AUVs that mimic marine animals (based on past MIT projects such as Robotuna); and surface crafts for applications such as hydrographic surveying and communicating with and shadowing AUVs.

The biggest challenge for AUV engineers is power generation. Most AUVs run on batteries, and current fuel-cell technology limits missions to hours rather than weeks or months of continuous underwater activity.

Chryssostomidis and his colleagues are also working on underwater acoustic communication via modem and on software that enables high-level control of both communication and navigation.

Eric Feron and his research group in the Laboratory for Information and Decision Systems are working on several projects that may lead to more airborne robots. Those projects include intelligent aircraft, communication among multiple air vehicles, and automated takeoff and landing.

The group has already made progress in two of these areas. The "robochopper," a model helicopter outfitted with a sophisticated instrumentation box, can perform autonomous aerobatic maneuvers at the flip of a remote-control switch.

Feron, an associate professor of aeronautics and astronautics, also led the development of an intelligent aircraft guidance system that allows a pilot in one airplane to guide another unmanned airplane by speaking commands in English.

An agile aerial vehicle such as the robochopper is better suited than a surface robot to some scenarios, said Feron, noting that it's easier to fly a miniature robotic helicopter through a chaotic urban environment than to deploy a land robot down in the streets.

Feron is taking on the challenge of autonomous landing. Unmanned aircraft presently use GPS (Global Positioning System) for navigation, but that technology is not reliable enough to manage the fine transition between air and ground. "We wouldn't want to put it in any of the critical tasks involved in landing," he said.

The solution, says Feron, is to mimic a human pilot's vision. He is developing what he calls a "collaborative vision scheme," in which the "eye" of a helicopter (a camera), looks at a specially designed target sitting on the landing area.

The target allows the helicopter to obtain the position parameters in real time necessary for landing.

Related Links
MIT
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Machines Could Turn Homes Into Small Factories
Bath, UK (SPX) Mar 18, 2005
A revolutionary machine which can make everything from a cup to a clarinet quickly and cheaply could be in all our homes in the next few years.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.