Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

ASU Plays Role In Making Spacecraft More Autonomous

illustration only
Tempe AZ (SPX) Jun 29, 2004
NASA's ambitious project to make its spacecraft more autonomous includes software algorithms developed by Arizona State University planetary scientists. NASA's Autonomous Sciencecraft Experiment (ASE) promises to give a spacecraft the capability to process data on-board, detect changes and trigger an automated response, such as taking additional images of an area experiencing change.

This is a dramatic departure from how control over spacecraft is handled today, which typically is done by a team of researchers on Earth. The goal is to make the spacecraft more self-reliant for discerning interesting sites for scientists on Earth.

That way it can focus on the areas of interest, and immediately respond to dynamic events, eliminating time delays that arise from transmitting data back to Earth, processing and analyzing the data, and only then sending new instructions to the spacecraft.

"The Autonomous Sciencecraft Experiment is a big step in the right direction to creating fully autonomous spacecraft," said Steve Chien, the JPL senior technologist for software on the ASE project.

"When operating in the outer reaches of the solar system, it can react quickly to important science events and quickly send the processed data back to Earth."

ASE consists of three computer programs. The first is a planner that organizes the spacecraft activity, working from a list of science goals. The second part is a specialized code that controls the spacecraft and instruments. The third part is made up of programs that search the data for scientifically interesting features.

ASU's contribution is the development of algorithms to detect changes in ice on Earth, such as the freeze and thaw of lakes, snowfall on land, and the formation and retreat of polar sea ice.

"We want to demonstrate we can do this," said Thomas Doggett, a graduate student and member of ASU's Planetary Geology Group. Doggett and ASU professor Ron Greeley are working with NASA scientists on ASE. "The first step of this process is to develop algorithms that can discern differences between snow, water, ice and land."

The ASU algorithms were uploaded to Earth Observing-1, a satellite operated by NASA's Goddard Space Flight Center, which carries Hyperion, a hyper-spectral visible/infrared imager.

In addition to the Arizona State ice algorithm, ASE is studying volcanic and flooding activity with algorithms developed by scientists at JPL and the University of Arizona, respectively.

The ASU algorithm had its first complete test on April 29th, when sea ice detected in an image of Barrow Channel near the town of Resolute in the Canadian arctic triggered an observation of Ward Hunt Ice Shelf on the following day.

In addition to sea ice in Canada and Alaska, the ice algorithm is being tested on lakes in Wisconsin, Minnesota and Tibet, as well as sea ice in Antarctica.

"Autonomous detection of ice change is important for spacecraft monitoring a wide range of bodies in the solar system," Doggett said. "For example, evidence of ice has been found in the poles of Mercury and Earth's moon, sheltered from the boiling daytime temperatures by the permanent shadow of crater rims.

"The polar caps of Mars advance and retreat with the seasons much like those on Earth, except they are composed of carbon dioxide ice as well as water ice," he added.

"Geysers of nitrogen ice erupt on Neptune's moon Triton, and the geologic study of the outer solar system has shown evidence for other examples of cryo-volcanism, where molten ice acts on icy worlds much as lava does on rocky worlds like Earth."

Another question that could be addressed is whether under the crack-filled icy surface of Europa (a moon of Jupiter) is an ocean warmed by tidal heating from Jupiter, perhaps even supporting life.

"If there is still an ocean today, the answer could come from cracks forming on the surface under the ongoing tidal forces exerted by Jupiter, briefly exposing the material below," Doggett said.

"If future spacecraft, like the proposed Jupiter Icy Moons Orbiter, or a Mars mission looking at the polar caps, are equipped with ASE-like functions, they could provide a dynamic view of these phenomena."

Related Links

ASE at JPL SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Remote-Controlled Throwable Robot Sent To Iraq For Testing
Pittsburgh PA (SPX) Jun 24, 2004
Carnegie Mellon University robotics researchers, in conjunction with the U.S. Marine Corps' Warfighting Laboratory, have developed a small, throwable, remote-controlled prototype robot designed for surveillance in urban settings. Several of the robots are being sent to Iraq for testing.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.