. 24/7 Space News .
Spherical Motor Allows 3-D Movement For Robots

David Stein (left) and Gregory Chirikjian have developed a new spherical motor that could be used in robotic joints or an interactive computer mouse. Photo by Keith Weller
Baltimore - Jan. 16, 2001
Engineers at The Johns Hopkins University have invented a globe-shaped motor that is capable of rotating in any direction. The device, which uses electromagnets controlled by a computer, could give robotic arms greater flexibility and precision and might even allow the lowly computer mouse to guide the hand of the computer user, instead of the reverse.

These advances could come about because the new spherical motor permits a wide range of unhindered mechanical motion. "A conventional motor turns on an axis, moving in one direction," explains Gregory S. Chirikjian, an associate professor in the Department of Mechanical Engineering of the Whiting School of Engineering. "What we've developed is a new type of spherical motor. Basically, there's a ball inside, and we can rotate it in any direction we want."

Magnetic forces and complex computer software make the device work. For their prototype, Chirikjian and doctoral student David Stein mounted 80 permanent magnets inside a hollow sphere, arranging them in a precise pattern. Like a scoop of ice cream nestled into a cone, the magnet-laden sphere was then placed into a tapered base atop a "saddle" made of 16 circular electromagnets, each marked with a number.

By activating two or more of these electromagnets, the operator causes them to attract certain permanent magnets inside the sphere. This attraction pulls the ball into a new position.

The idea of a spherical motor is not new. But the Johns Hopkins engineers believe their model is superior to previous efforts because it can achieve a much greater range of motion.

Chirikjian and Stein described their device in a paper presented at a conference sponsored by the American Society of Mechanical Engineers. Also, Chirikjian and Stein, along with a third collaborator, Edward Scheinerman, a professor of mathematical sciences at Johns Hopkins, recently applied for two U.S. patents covering components they developed for the prototype.

With further refinement, the inventors say, the spherical motor could replace the conventional motors that are now used to move robotic arms in three dimensions. Currently, a robotic arm needs six or more conventional motors to position and orient objects in three dimensions. But the spherical motor would behave like a human shoulder joint, rather than an elbow joint.

As a result, Chirikjian says, three spherical motors could give a robotic arm a greater range of motion than arms that have six traditional motors. "You'd be able to use far fewer joints because each spherical motor would have more freedom of motion," he says.

"This would also enable the robotic arm to be more accurate because every time you have a joint, you introduce a little bit of play, a little bit of wiggle to the arm. When you have six or more traditional motors, that little bit of wiggle adds up. If instead you could use only three spherical motors, you'd have much less jiggli

The inventors envision other applications for the spherical motor. "You could also turn these motors upside down and use each one as a three-dimensional wheel," Chirikjian suggests. "It would not only turn around an axis like a conventional wheel, it would have omnidimensional characteristics. For example, if you put a ball in a socket, you can roll it any way you want, unlike a regular wheel, which can only go in one direction without slipping.

"You could also use the spherical motor technology to create a computer mouse that pulls you around, if you wanted to interact with your computer. You'd be able to argue with your computer -- it wants you to go one way, and you want to go another. This technology could be used in games or as a way to have intelligent agents in a computer interact with the physical world. Right now, most everything on a computer is visual in nature. But one can imagine that in the future this interaction will involve more of the sense of touch."

Related Links
Whiting School of Engineering
Department of Mechanical Engineering
Gregory S. Chirikjian's Home Page
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Hopping Into The Future Across Distant World
Pasadena - Nov. 28, 2000
A small hopping robot with froglike abilities that moves by a combination of rolls and hops to its desired destination may someday hop a ride to an asteroid and leap its way to other planets in the search for water.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.