. 24/7 Space News .
Radiation Resistant Computers

The humans inside this spacecraft aren't the only ones who need protection from space radiation; their computers do, too.
by Patrick L. Barry for Science at NASA
Huntsville AL (SPX) Nov 21, 2005
When your computer behaves erratically, mauls your data, or just "crashes" completely, it can be frustrating. But for an astronaut trusting a computer to run navigation and life-support systems, computer glitches could be fatal.

Unfortunately, the radiation that pervades space can trigger such glitches. When high-speed particles, such as cosmic rays, collide with the microscopic circuitry of computer chips, they can cause chips to make errors. If those errors send the spacecraft flying off in the wrong direction or disrupt the life-support system, it could be bad news.

To ensure safety, most space missions use radiation hardened computer chips. "Rad-hard" chips are unlike ordinary chips in many ways. For example, they contain extra transistors that take more energy to switch on and off. Cosmic rays can't trigger them so easily. Rad-hard chips continue to do accurate calculations when ordinary chips might "glitch."

NASA relies almost exclusively on these extra-durable chips to make computers space-worthy. But these custom-made chips have some downsides: They're expensive, power hungry, and slow -- as much as 10 times slower than an equivalent CPU in a modern consumer desktop PC.

With NASA sending people back to the moon and on to Mars--see the Vision for Space Exploration--mission planners would love to give their spacecraft more computing horsepower.

Having more computing power onboard would help spacecraft conserve one of their most limited resources: bandwidth. The bandwidth available for beaming data back to Earth is often a bottleneck, with transmission speeds even slower than old dial-up modems. If the reams of raw data gathered by the spacecraft's sensors could be "crunched" onboard, scientists could beam back just the results, which would take much less bandwidth.

On the surface of the moon or Mars, explorers could use fast computers to analyze their data right after collecting it, quickly identifying areas of high scientific interest and perhaps gathering more data before a fleeting opportunity passes. Rovers would benefit, too, from the extra intelligence of modern CPUs.

Using the same inexpensive, powerful Pentium and PowerPC chips found in consumer PCs would help tremendously, but to do so, the problem of radiation-induced errors must be solved.

This is where a NASA project called Environmentally Adaptive Fault-Tolerant Computing (EAFTC) comes in. Researchers working on the project are experimenting with ways to use consumer CPUs in space missions. They're particularly interested in "single event upsets," the most common kind of glitches caused by single particles of radiation barreling into chips.

Team member Raphael Some of JPL explains: "One way to use faster, consumer CPUs in space is simply to have three times as many CPUs as you need: The three CPUs perform the same calculation and vote on the result. If one of the CPUs makes a radiation-induced error, the other two will still agree, thus winning the vote and giving the correct result."

This works, but often it's overkill, wasting precious electricity and computing power to triple-check calculations that aren't critical.

"To do this smarter and more efficiently, we're developing software that weighs the importance of a calculation," continues Some. "If it's very important, like navigation, all three CPUs must vote. If it's less important, like measuring the chemical makeup of a rock, only one or two CPUs might be involved."

This is just one of dozens of error-correction techniques that EAFTC pulls together into a single package. The result is much better efficiency: Without the EAFTC software, a computer based on consumer CPUs needs 100-200% redundancy to protect against radiation-caused errors. (100% redundancy means 2 CPUs; 200% means 3 CPUs.) With EAFTC, only 15-20% redundancy is needed for the same degree of protection. All of that saved CPU time can be used productively instead.

"EAFTC is not going to replace rad-hard CPUs," cautions Some. "Some tasks, such as life support, are so important we'll always want radiation hardened chips to run them." But, in due course, EAFTC algorithms might take some of the data-processing load off those chips, making vastly greater computer power available to future missions.

EAFTC's first test will be onboard a satellite called Space Technology 8 (ST-8). Part of NASA's New Millennium Program, ST-8 will flight-test new, experimental space technologies such as EAFTC, making it possible to use them in future missions with greater confidence.

The satellite, scheduled for a 2009 launch, will skim the Van Allen radiation belts during each of its elliptical orbits, testing EAFTC in this high-radiation environment similar to deep space.

If all goes well, space probes venturing across the solar system may soon be using the exact same chips found in your desktop PC -- just without the glitches.

Related Links
NASA's New Millennium Program
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

An Odd List Of Body Parts
Huntsville AL (SPX) Oct 28, 2005
Picture this: An astronaut, on the Moon, hunched down over a rock, hammer in hand, prospecting. Suddenly, over his shoulder, there's a flash of light on the sun.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.