. 24/7 Space News .

During the preceding winter Arctic ozone levels reached their lowest point in eight years at an altitude of nearly 60,000 feet. Concentrations dropped more than 50 percent from their average. But measurements taken during the largest international campaign ever mustered to study the Arctic stratosphere are yielding better insights into the processes that control polar ozone. Called SOLVE (Stratospheric Ozone Loss and Validation Experiment), it included researchers from Europe, Russia, Canada, and the United States working together to develop better tools for predicting the state of polar ozone levels. These predictive tools will become more and more important in light of expected chlorine level declines due to the Montreal Protocol and what will likely be increasing levels of greenhouse gases in the coming decades.
Arctic Ozone May Face Long Term Threat
Pasadena - May 29, 2000 - The ozone layer that protects life on Earth may not be recovering from the damage it has suffered over the Arctic region as quickly as scientists previously thought, according to a paper published in the May 26 issue of the journal Science. Specifics of the research also will be presented at the annual meeting of the American Geophysical Union in Washington, D.C., on May 31.

More polar stratospheric clouds than anticipated are forming high above the North Pole, causing additional ozone loss in the sky over the Arctic, according to Dr. Azadeh Tabazadeh, lead author of the paper and a scientist at NASA's Ames Research Center in California's Silicon Valley. The stratosphere comprises Earth's atmosphere from about 9 to 25 miles (about 15 to 40 kilometers) altitude and includes the ozone layer.

"Polar stratospheric clouds provide a 'double-whammy' to stratospheric ozone. They provide the surfaces which convert benign forms of chlorine into reactive, ozone-destroying forms, and they remove nitrogen compounds that act to moderate the destructive impact of chlorine," said Dr. Phil DeCola, Atmospheric Chemistry Program Manager at NASA Headquarters, Washington, D.C.

"The Arctic has become colder and more humid, conditions that promote formation of more polar stratospheric clouds that take part in polar ozone destruction. The main conclusion of our study is that if this trend continues, Arctic clouds will remain longer in the stratosphere in the future," Tabazadeh said.

"An ozone hole forms every spring over the Antarctic in the Southern Hemisphere which is colder than the Arctic," said Tabazadeh. "The Arctic has been getting colder and is becoming more like the Antarctic; this could lead to more dramatic ozone loss in the future over the Northern Hemisphere, where many people live."

Researchers used data from NASA's Upper Atmosphere Research Satellite to analyze cloud data from both the north and south polar regions for the study. "What we found from the satellite was that polar stratospheric clouds currently last twice as long in the Antarctic as compared to the Arctic," Tabazadeh said.

"However, our calculations show that by 2010 the Arctic may become more Antarctic-like' if Arctic temperatures drop further by about 5 to 7 degrees Fahrenheit (a drop of about 3 to 4 degrees Celsius)," she said.

When Arctic polar stratospheric clouds last longer, they can precipitate, removing nitrogen from the upper atmosphere, which increases the opportunity for chlorine compounds to destroy ozone more efficiently. The polar stratospheric clouds involved in the reactions contain nitric acid and water, according to researchers who discovered these clouds in 1986.

"Data from the Microwave Limb Sounder on UARS have provided the first opportunity to observe nitric acid throughout the Arctic and the Antarctic over a period of many years," said Dr. Michelle Santee, a scientist at NASA's Jet Propulsion Laboratory, Pasadena, CA, who is a co-author of the Science paper.

"The continued presence of nitric acid in the Arctic winter -- which is not the case in the Antarctic -- helps to moderate ozone loss by reducing the amount of reactive chlorine, but this could change in the future," she added.

More than a decade ago, scientists determined that human- made chlorine and bromine compounds cause most ozone depletion. Manufacturers made the chlorine compounds, chloroflourocarbons or "CFCs," for use as refrigerants, aerosol sprays, solvents and foam-blowing agents.

Fire fighters used bromine-containing halogens to put out fires. Manufacture of CFCs ceased in 1996 in signatory countries under the terms of the Montreal Protocol and its amendments.

The Montreal Protocol bans CFC emissions. As a result, the chlorine concentration in the upper atmosphere is already starting to decline, according to Tabazadeh.

"Scientists used to believe that as chlorine levels decline in the upper atmosphere, the ozone layer should slowly start to recover. However, greenhouse gas emissions, which provide warming at the Earth's surface, lead to cooling in the upper atmosphere. "This cooling promotes formation of the kind of polar stratospheric clouds that contribute to ozone loss. Several recent studies, including this one, show that ozone recovery is more complex and will take longer than originally thought," she explained.

  • Upper Atmosphere Research Satellite
  • International Campaign Observes Significant Arctic Ozone Loss

    TERRADAILY.COM
     ESA Beefs Up Ozone Monitoring Capability
    Paris - March 7, 2000 - The continued monitoring of ozone is assured well towards the end of the next decade through a 38.3 million Euro contract signed last week in Florence, Italy for three new Global Ozone Monitoring Experiment (GOME-2) instruments.




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.