. 24/7 Space News .
Micromirrors To Light Up Space Telescope
 Albuquerque - November 15, 1999 - Micromirrors being developed by the Department of Energy's Sandia National Laboratories may one day be part of the Next Generation Space Telescope (NGST), the successor to the Hubble that will peruse the universe looking for remnants from the period in which the first stars and galaxies formed.

"We are designing mirrors that will be very, very small, move independently and be able to withstand the very cold temperatures and extreme conditions of space," says Ernie Garcia, the Sandia engineer leading the mirror development effort.

Caption A micromirror developed by Sandia engineer Ernie Garcia is pictured in the tilted position. Each mirror has a diameter slightly larger than a human hair.

The mirrors, each slightly larger than a cross section of a human hair, will be sensitive to infrared radiation and, as a result, will be able to detect faint signals from the first billion years after the Big Bang. This will help scientists better understand the origins of the universe.

Aware of Sandia's advancements in microelectromechanical systems (MEMS) technology, NASA approached the Labs last year about developing prototype MEMS mirrors that could be part of the NGST, tentatively scheduled for launch in 2008. The one-year contract began in January, and nine months later Garcia had functioning mirrors to show the agency.

The fast turnaround at Sandia's Microelectronics Development Laboratory (MDL), which fabricated the mirrors, made it possible for Garcia to provide NASA with a working device quickly.

In September Garcia demonstrated to NASA/Goddard Space Flight Center in Greenbelt, Md., an array of working mirrors, each 100 microns by 100 microns with 1-micron gaps between adjacent mirrors, lined up in rows of three. Each row tilted 10 degrees in unison -- a large angle for this design. (One hundred microns is slightly larger than the diameter of a human hair.)

"Getting these miniaturized mirrors to rotate to such a large angle was a real milestone in the research," Garcia says. "It's something that NASA wanted, and we did it."

The goal is to have four million of these independently moving mirrors in the NGST. Each mirror could be tilted in different directions to redirect optical signals to an infrared detector.

In light of the success of getting the mirrors to rotate at large angles, Garcia is hopeful that NASA will extend the contract to continue the research.

NASA is pursuing the NGST as the successor to the Hubble Space Telescope in an effort to observe the "Dark Zone," a period 100 million to one billion years after the Big Bang when primordial seeds began to evolve into the galaxies and stars known today. It would also see formations in the present day universe. The Hubble has provided data about more recent formations, but has been unable to detect the earlier stars that fall in the infrared range because it was designed as an optical telescope.

The NGST, on the other hand, will be extremely sensitive to infrared radiation, and with its large light-gathering mirror and superb resolution, will be capable of detecting the earlier signals. The new telescope will be placed in orbit well beyond the Earth's moon to reduce stray light and achieve the cold temperatures needed to observe in the infrared.

Currently three entities -- Lockheed Martin, Goddard Space Flight Center, and TRW -- are studying different design approaches for the NGST. Each approach includes adjustable thin mirrors, deep space orbits, fast- steering mirrors for fine guidance, and infrequent contact with the ground. They differ in the areas of mirror construction, materials and deployment, detector types, sunshield types, vibration control and launch vehicles. Eventually NASA will select one design from the three for the final NGST.

The mirrors Garcia is designing could go into any one of the three NGST approaches as part of the Integrated Science Instrument Module that will also include cameras, spectrographs, and infrared detectors. The micromirrors will work in conjunction with a very large mirror -- possibly eight meters in diameter -- that will collect light from a broad area in space. When an object is encountered that appears interesting, the smaller micromirrors would be tilted to reflect the image from only that area, beaming the information to an infrared detector.

Garcia says he still faces several challenges in developing moving mirrors for the NGST.

One is making the mirrors able to function in extremely cold temperatures.

"Instrument operating temperatures in space can be 30 degrees K [-405 degrees F] or lower," Garcia says. "That means we have to build these mirrors a special way so that they won't break at such extremes."

The mirrors are built by depositing thin films of polycrystalline silicon on a silicon wafer. The first layer, called poly0, contains connection wires. The others, poly1, poly2, and poly3, are mechanical layers that allow the MEMS device to move. Garcia plans to soon add on top of the poly3 a final thin layer of gold to reflect infrared light.

Therein lies the problem in cold temperatures, Garcia says.

"Different materials shrink at different rates when subjected to temperature changes," Garcia says. "As the temperature is reduced, the gold layer will shrink faster than the polysilicon. This will cause stress. If the stress levels get too high, the mirror could break or deform or the gold could peel away. We have to come up with the smallest thickness of gold so that it doesn't cause excessive stress, but yet be thick enough to reflect the infrareds."

The MDL will soon begin fabricating an improved mirror design, which will be cold-tested by NASA next year in a cryogenic chamber where the conditions of deep space will be simulated.

Another challenge Garcia is concurrently striving to resolve is that of making each of the mirrors move independently. The new design, which will soon be fabricated at the MDL, has each row tilting in unison and one mirror in the middle tilting and moving independently. But doing this for each of the four million mirrors is a major hurdle.

Find out more about the Next Generation Space Telescope at the Web site, http://ngst.gsfc.nasa.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major research and development responsibilities in national security, energy and environmental technologies, and economic competitiveness.

  • NGST at STScI
  • NGST at ESA Astrophysics
  • NGST at NASA/GSFC
  • NGST page at ECF


    SPACE SCIENCE
    Next Gen Space Telescope Concept Developing
     Hyannis - September 29, 1999 - Scientists and engineers working on the next generation space telescope mid-September to discuss the scientific ideas and technological possibilities for "the space observatory of the next decade". NGST will be launched in late 2007 or early 2008. To probe even deeper into the universe, it is necessary to see to higher redshift (all objects in the universe look redder the farther away they are) -- and this is where NGST comes in.

    SpaceScope News at SpaceDaily

  • Marshall Scoping Exo Worlds
  • Ball To Build Three Bird Telescope
  • New Space Telescope Contractors Selected
  • NASA Seeks Innovative Next Generation Space Telescope Ideas
  • Spy Tech Helping Next Generation Space Telescope
  • TRW and Ball Team For Space Telescope Bid
  • ExtraSolar News - SpaceDaily Special Report
  • SETI News - SpaceDaily Special Report
  • Space Science - SpaceDaily Special Report




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.