. 24/7 Space News .
EROSDAILY
When NEAR Enough Ain't Close Enough

Saddle of Eros - Desptop available
Ithaca - Feb. 5, 2001
As NASA's Near Earth Asteroid Rendezvous spacecraft, known as NEAR Shoemaker, closes in on asteroid 433 Eros, Cornell University astronomers hope that surface details as small as a hand-size rock will be captured by the camera before the spacecraft bumps down on the boulder-strewn surface Feb. 12.

Since last October, the NEAR imaging team has been puzzling over strange surface features of Eros seen in new, high-resolution images. There is the hope that the close-up images taken in the final few minutes before the spacecraft drops onto the surface will help to answer their questions about the geology of the 22-mile-long asteroid more than 196 million miles (316 million kilometers) from Earth.

"Since last October we have seen details of Eros at 1 meter resolution that we haven't seen anywhere else before and don't understand," says Cornell astronomer Joseph Veverka, who heads the imaging team. "That's why we are so excited about getting close to the surface."

The landing -- what NASA is calling a "controlled descent" -- is a highly risky maneuver, involving four thruster firings over four hours intended to slow the rate of descent to 7 mph from 20 mph. In the final 45 minutes, when the spacecraft is about 3.5 to 4.5 miles (about 6 to 7.5 kilometers) from its landing site at the edge of the crater Himeros, the camera will begin taking a new image about every 30 seconds.

The final picture will be captured at just 550 yards (500 meters) from the surface, enough to capture details as small as perhaps 4 inches (10 centimeters) across. Mission leaders at the Applied Physics Laboratory at Johns Hopkins University, which built the spacecraft and manages the NEAR mission, do not expect images to be transmitted from the surface because Eros's spin and topography will almost certainly prevent communication between Earth and the craft.

Why does Veverka's team want to get such a close look at Eros' surface details? Because, says Veverka, who is professor of astronomy at Cornell, his team is frankly puzzled by what it has seen on Eros over the past few weeks. Last October, with much of NEAR's mission accomplished, the spacecraft was sent into orbit just 4 miles (about 6 kilometers) or so from the asteroid's surface. For the first time the imaging team was seeing details as small as a yard (.9 meter) across, compared with the approximately 5.5 yards (5 meters) resolution that had been captured by the camera since the spacecraft went into orbit around Eros on Feb. 14, 2000.

"Suddenly, we started seeing things we didn't expect and hadn't seen on other surfaces in the solar system," says Veverka. "It's like another door has opened."

The biggest surprise, says Cornell researcher Peter Thomas, who has been interpreting the geology of the asteroid's surface, "is that some small craters and other small depressions have flat, smooth floors, unlike most craters you see on Eros and other objects. It looks as if fine-grain material has slid down the craters' sides and ponded in the bottoms." Apparently, he says, there is some mechanism "we hadn't anticipated" that moves fine-grain material around on the surface. Although gravity on Eros is only one one-thousandth of that on Earth -- an average person would weigh only an ounce or two -- it is still "very effective in gathering materials in very flat floors on the bottom of depressions."

Another surprise, says Veverka, is the discovery that some small boulders are surrounded by material that appears to have disintegrated from the boulders' surfaces. "There is some process that is very gentle that somehow disintegrates rock. We haven't seen this on the moon, and we haven't seen this before on Eros," he says. "But it seems to be very common."

It is just possible, says Veverka, that the final image will be taken almost at the surface itself. He explains that the camera will remain in focus until about 220 yards (200 meters) from the landing site. If the spacecraft is still on course, it is possible that the camera will take one final image and have time to send a partial image on its way to Earth before the spacecraft touches down. It takes 10 milliseconds for the exposure, 1 second to read the image into the spacecraft recorder and 30 seconds for the data to emerge from the recorder. The data then take 17 to 18 minutes to reach Earth tracking stations.

The imaging team now is getting even higher-resolution images of these features. On Jan. 24 the spacecraft entered a close flyby sequence, including a four-day orbit that produced images from as close as 2 miles (3.2 kilometers) above the surface. These new images are enabling the Cornell imaging team to accumulate data at a resolution of about 1.1 yards (1 meter). "The hope is that during the descent we can improve this resolution by perhaps a factor of 10 so that we can find out more about what is going on there," says Veverka.

Related Links
NEAR Mission
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

EROSDAILY
Nose-to-Nose With An Asteroid
Laurel - January 28, 2001
The NEAR Shoemaker spacecraft made history once again today when it brushed over the "toe" end of Eros, less than two miles (2.74 kilometers) from its surface, at 5:41 a.m. EST (ground receive time).



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.