Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















Nano World: Diamond-Nanotube Composites

High-energy high-angle-twist (100) grain boundary in diamond.
by Charles Q. Choi
New York (UPI) Sep 06, 2005
A novel hybrid material composed of diamond and carbon nanotubes could find use in everything from biological-weapons detectors to flat-panel displays, experts told UPI's Nano World.

Diamond is the hardest material known; it has the highest capability to resist scratches. Carbon nanotubes, on the other hand, are the strongest structures known, and the amount of force they can resist, pound for pound, is the highest ever measured.

"There was this kind of 'what if,'" said researcher John Carlisle, a physicist at Argonne National Laboratory in Illinois. "What if you could integrate the strongest material known with the hardest known material? Would the sum of the parts be not only hard and tough, but maybe have other capabilities you wouldn't predict?"

The researchers grew their composite by exposing a surface covered with diamond nanoparticles and iron nanoparticles to an argon-rich, hydrogen-poor plasma. The diamond and iron nanoparticles catalyze the growth of ultrananocrystalline diamond and carbon nanotubes, respectively.

"For the most part we grow these materials onto flat surfaces, but the composite could also be more complex shapes, such as hip joints," Carlisle said.

The scientists published their research in the journal Advanced Materials.

The hybrid material could make for coatings as hard and low friction as diamond while less brittle. The composites might also find use in flat panel displays: The diamond may keep the carbon nanotubes from unraveling as they do normally when scientists attempted to make displays made from nanotubes alone.

And the diamond-carbon nanotube material could also find use in bioweapons detectors, with nanotubes bound to biomolecules acting as the sensor elements and the diamond behaving as an exquisitely sensitive electrode.

By tinkering with the growth conditions, the researchers can vary the concentration, placement and orientation of the diamond and nanotubes, and then customize the composite's properties. Carlisle and his colleagues plan to spend the next few years analyzing the mechanical, electronic, thermal and other properties of each variation.

"This is interesting, exciting, and plausible work," said research chemist James Butler at the U.S. Naval Research Laboratory in Washington. "The impact of this work will depend on many factors unknown yet -- what are the properties of this material, what applications can benefit from, what will it enable, or what value added will it bring."

Robert Nemanich, a materials physicist at North Carolina State University in Raleigh, said an important aspect of the research "was the ability to control the relative amount of diamond and nanotube components of the film. This capability should enable engineering to precise materials properties for specific applications. This material should exhibit a wider range of physical and chemical properties than either diamond or nanotubes."

Most of the nanotubes in the composite are of the weaker multi-walled variety, but the scientists have detected the stronger single-walled kind as well.

"One of the short-term goals of our research is to minimize the growth of multi-walled carbon nanotubes in favor of single-walled carbon nanotubes," Carlisle said. "If successful, the fracture toughness of the composite will hopefully increase substantially."

It remains unclear as to how strongly the diamond and nanotubes are bonded together. The researchers also need to refine the growth process to make the composite reproducible.

"It will be a few years before we know whether the nanocomposites have sufficiently superior properties that would enable products with unique enough capabilities that justify their development," Carlisle cautioned.

The researchers have filed a patent on their results, which they have licensed to an Argonne laboratory startup company called Advanced Diamond Technologies.

Carlisle serves as chief technical officer for ADT in Champaign, Ill.

Charles Choi covers research and technology for UPI.

All rights reserved. 2005 United Press International. Sections of the information displayed on this page (dispatches, photographs, logos) are protected by intellectual property rights owned by United Press International.. As a consequence, you may not copy, reproduce, modify, transmit, publish, display or in any way commercially exploit any of the content of this section without the prior written consent of United Press International.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Nano-Machines Achieve Huge Mechanical Breakthrough
Dublin, Ireland (SPX) Sep 08, 2005
A major advance in nanotechnology with far-reaching potential benefits in medicine and other fields is to be announced at this year's BA Festival of Science in Dublin. Scientists have built molecules that can, for the first time ever, move larger-than-atom-sized objects. Constructing molecular machines capable of performing relatively large-scale mechanical tasks has never been achieved before.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.