. 24/7 Space News .
High-Fidelity Patterns Form Spontaneously When Solvent Evaporates

"A lot of work in nanotechnology has been directed toward the bottom-up imposition of patterns onto materials," said Steve Granick, a professor of materials science, chemistry and physics at the University of Illinois at Urbana-Champaign. "We found that beautiful patterns of high fidelity and regularity could form naturally and spontaneously, simply by allowing a drop to evaporate in a confined geometry." Photo by Kwame Ross.
Champaign IL (SPX) Mar 01, 2005
Resembling neatly stacked rows of driftwood abandoned by receding tides, particles left by a confined, evaporating droplet can create beautiful and complex patterns. The natural, pattern-forming process could find use in fields such as nanotechnology and optoelectronics.

"A lot of work in nanotechnology has been directed toward the bottom-up imposition of patterns onto materials," said Steve Granick, a professor of materials science, chemistry and physics at the University of Illinois at Urbana-Champaign. "We found that beautiful patterns of high fidelity and regularity could form naturally and spontaneously, simply by allowing a drop to evaporate in a confined geometry."

Granick and former postdoctoral research associate Zhiqun Lin (now a professor of materials science at Iowa State University) describe their work in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. Funding was provided by the U.S. Department of Energy.

To produce the patterns, Granick and Lin began by gluing two small mica sheets to cylindrical mounts. With the cylinders at right angles, a droplet of volatile solution containing small polymer chains was inserted between the curved mica sheets. The sheets were then brought into contact and left undisturbed until evaporation was complete.

Because evaporation in this geometry is restricted to the edge of the droplet, the process results in hundreds of concentric rings with regular spacing, very much resembling a miniature archery target. Each ring -- composed of polymer chains abandoned as the solvent receded -- is several nanometers high and several microns wide.

The droplet evaporates in a jerky, stick-slip fashion, said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology.

"While the droplet is sticking to the surface, a ring of polymer is deposited," he said. "As evaporation continues, tension builds in the droplet. Eventually the droplet jerks to a new position, the tension is temporarily relieved, and another ring is deposited."

The simple evaporative process could be used to form patterns with many other materials, such as electrically conducting polymers, nanoparticles and proteins. Pattern formation could be controlled by altering the size of the material, changing the solvent, or modifying the surfaces.

"The pattern emerges spontaneously from the geometry in which we put the droplet," Granick said. "This means we could make other kinds of patterns by using different geometries or surfaces with tailored wettability."

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Tiny particles Could Solve Billion-Dollar Problem
Houston TX (SPX) Feb 24, 2005
New research from Rice University's Center for Biological and Environmental Nanotechnology finds that nanoparticles of gold and palladium are the most effective catalysts yet identified for remediation of one of the nation's most pervasive and troublesome groundwater pollutants, trichloroethene or TCE.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.