. 24/7 Space News .
Using Proteins To Develop Nanoparticles To Aid Environmental Remediation

illustration only
by Preston Moretz
Philadelphia PA (SPX) Aug 26, 2004
Researchers at Temple University are using protein structures to design and assemble metal oxide nanoparticles that could be used in environmental remediation.

They will present their research, "Inorganic nanoparticles synthesized from biological precursors as nanocatalysts for environmental applications," at the 228th American Chemical Society national meeting, Aug. 22-26, in Philadelphia.

The researchers have been exploring how these nanoparticles can be used in environmental remediation, such as helping to transform toxic metals in lakes, rivers or streams, and in groundwater for easier cleanup.

"The protein we use to make these particles is ferritin, which is a protein we carry around in our blood," says Daniel R. Strongin, Ph.D., professor of chemistry at Temple.

"It's an iron storage protein, so if there's extra iron in our blood, it typically gets stored in ferritin. Then, when our body needs iron, the ferritin releases what has been stored."

Strongin and his collaborators, Hazel Ann Hosein, a doctoral student in chemistry at Temple, and Trevor Douglas, an associate professor of chemistry at Montana State University, have been loading horse spleen ferritin with iron in the laboratory to create the nanoparticles. By varying the amount of iron they load, they can vary the size of the particles.

"For example, there are certain oxidation states that would make the metals precipitate in solution, or fall out of solution so they can't be carried downstream or by groundwater," explains Strongin.

"In one case, we've been looking at the reduction of toxic Chromium-6 (or hexavalent chromium), one that the U.S. Environmental Protection Agency has on their toxic metal list for groundwater."

By applying the nanoparticles to Chromium-6, and with the aid of visible light or solar radiation to activate the particles-the particles are photocatalytic-the researchers were able to reduce the chromium from hexavalent to trivalent, which is insoluble in water.

"Trivalent chromium is much easier to clean," says Strongin. "You can filter it much more easily in this state."

Strongin says that their results have been encouraging enough that the researchers believe that the nanoparticles they are creating could have an impact on other toxic metals, such as Technetium-7, which is a problem at the nuclear waste site in the state of Washington.

"These large canisters of nuclear waste have been sitting there since the 1940s and '50s, and they are slowly leaking," he says.

"People are worried about it getting into the groundwater. But we believe that this method of using nanoparticles could play a role in preventing the spread in groundwater and help facilitate cleaning it up."

Strongin says the researchers are attempting to do chemistry with these nanoparticles that could not otherwise be done with larger bulk materials.

"We have a pretty novel approach in using proteins to assemble these particles," he says. "Nature does this, and we're just harnessing that ability."

Funding for this research was provided by the U.S. Environmental Protection Agency and the American Chemical Society.

Related Links
US EPA
American Chemical Society
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Taking Charge Of Molecular Wires
Upton NY (SPX) Aug 23, 2004
Scientists from the US Department of Energy's Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components in solar energy storage systems.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.