. 24/7 Space News .
Technique Could Help "Fine-Tune" Nanotube Based Material

illustration only
Philadelphia - Dec 03, 2003
Materials fortified with carbon nanotubes are strongest when the embedded filaments run parallel to each other, but electronic and thermal conductivity are best when the nanotubes are oriented randomly. That the finding from a team of engineers at the University of Pennsylvania who have developed a production technique that permits a finer and more precise dispersion of nanotubes within a material.

The results, which could give scientists the tools to customize nano-tube-laced materials to meet their particular needs, are reported online this week and in the Dec. 15 print edition of the Journal of Polymer Science Part B: Polymer Physics.

Less than one-ten-thousandth the width of a human hair, carbon nanotubes possess unparalleled strength, superior heat-conducting properties and a unique ability to adopt the electrical properties of either semiconductors or metals, but so far they have failed to back up this theoretical potential with real-world applications.

"A major hurdle that has prevented us from mixing nanotubes into materials to take advantage of these remarkable properties is their stubborn tendency to bundle together," said Karen I. Winey, associate professor of materials science and engineering at Penn.

"Uniform dispersion of nanotubes in materials is absolutely critical to harnessing their strength, electrical conductivity and thermal stability."

Winey and her colleagues used a technique called coagulation to mix single-walled carbon nanotubes evenly into a plastic, or polymer, called poly(methyl methylacrylate).

In this method, nanotubes and PMMA are first mixed into a solvent, creating a fine suspension, and then plunged into dis-tilled water. The PMMA rapidly precipitates out of this mixture, dragging the nanotubes with it and preventing them from clumping.

After filtration and drying, this nanotube/PMMA compound showed strength and conductivity gains over ordinary PMMA. Furthermore, the composites demonstrated improved thermal stability relative to PMMA, indi-cating promise as a fire-retardant additive. When Winey group compared samples more closely, however, they noticed how greatly the material prop-erties varied with the alignment of the miniature strands of carbon.

"At low concentrations the electrical conductivity of these nanocompo-sites was roughly 100,000 times better when the nanotubes were unaligned than when the nanotubes were well aligned," Winey said. Their process for aligning nanotubes in composites was reported previously.

Other researchers have observed dramatic strength and conductivity improvements in nanotube-laced polymers but typically with the addition of larger quantities of nanotubes than the 2 percent in many of the compounds Winey studied.

Because nanotubes are expensive, achieving comparable properties simply by tweaking the alignment of a much smaller number of nanotubes is a significant accomplishment.

"While alignment is an asset for some mechanical properties, alignment is clearly a detriment for electrical properties," Winey said, "here adding more of the expensive nanotubes is not nearly as cost-effective as producing a random orientation of nanotubes in a composite."

Winey was joined in the research by Fangming Du and John E. Fischer of Penn departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, respectively. Their work was supported by the Office of Naval Research.

Related Links
University of Pennsylvania
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Nanotech Instruments Allow Direct Observations Of RNA Proofreading
Stanford - Nov 27, 2003
When Ralph Waldo Emerson said that nature pardons no mistakes, he wasn't thinking about RNA polymerase (RNAP) - the versatile enzyme that copies genes from DNA onto strands of RNA, which then serve as templates for all of the proteins that make life possible.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.