Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Rovers Get Muscles For Asteroid Mission
JPL - February 24, 1999 - Artificial muscles that should give space robots animal-like flexibility and manipulation ability will get their first test on a small NASA rover destined to explore an asteroid.

Under development by Dr. Yoseph Bar-Cohen of NASA's Jet Propulsion Laboratory, Pasadena, CA, the artificial muscles are based on a simple, lightweight strip of highly flexible plastic that bends and functions similarly to human fingers when electrical voltage is applied to it.

Bar-Cohen and a small team of scientists and engineers are working to turn these strips into grippers and strings which can grab and lift loads, among many other potential uses. These strips and strings, known as artificial muscles or electroactive polymers (EAPs), have the potential to greatly simplify robotic spacecraft tasks. The technology could lead in the future to the development of insect-like robots that emulate biological creatures.

Years from now, these devices could also conceivably replace damaged human muscles, leading to partially "bionic men" and "bionic women" of the future, according to Bar-Cohen and his fellow researchers. "My hope is someday to see a handicapped person jogging to the grocery store using this technology," said Bar-Cohen, leader of JPL's Nondestructive Evaluation and Advanced Actuator Technologies unit, although such "blue sky" medical applications, even if proven feasible, may be decades away.

In the near-term, two EAP actuators are planned for use as miniature wipers to clear dust off the viewing windows of optical and infrared science instruments on the Mu Space Engineering Spacecraft (MUSES-CN) nanorover. This mission, led by the Japanese space agency ISAS, is designed to land the palm-sized rover on an asteroid following its 2002 launch, and return a sample of the asteroid to Earth.

"That's just the tip of the iceberg when it comes to space applications," Bar-Cohen added. "Electroactive polymers are changing the paradigm about the complexity of robots. In the future, we see the potential to emulate the resilience and fracture tolerance of biological muscles, enabling us to build simple robots that dig and operate cooperatively like ants, soft- land like cats or traverse long distances like a grasshopper."

Unlike human hands, which move by contracting and relaxing muscles, typical robotic arms utilize gears, hydraulics and other expensive, heavy, power-hungry parts. In future planetary exploration missions, where robots will need to perform tasks like collecting and manipulating samples of soil or ice, such mass and complexity becomes a problem. To meet these challenges, Bar-Cohen and his team have developed two types of artificial muscles that respond quickly to small amounts of electricity by lengthening or bending.

The first is a flexible polymer ribbon constructed from chains of carbon, fluorine and oxygen molecules. When an electric charge flows through the ribbon, charged particles in the polymer get pushed or pulled on the ribbon's two sides, depending on the polarity. The net result: The ribbon bends. Using four such ribbons, Bar-Cohen has fashioned a gripper that can pick up a rock.

The second consists of thin sheets wrapped into cigar-like cylinders that stretch when one side of a sheet is given a positive charge and the other a negative charge. These charges cause the wrapped sheet to contract toward the center of the cylinder, and this constriction forces the cylinder to expand lengthwise. When the power supply is turned off, the cylinder relaxes, enabling it to lift or drop loads.

Society of Photo-Optical Instrumentation Engineers' (SPIE) Symposium
Eight individual researchers or groups from around the world will demonstrate their work on artificial muscles as part of the Society of Photo-Optical Instrumentation Engineers' (SPIE) 6th Annual International Symposium on Smart Structures and Materials in Newport Beach, CA, in early March, with a media session planned for the evening of March 2. Contact Pat Wright of the SPIE (360/676-3290, x609) for further information on this event.

Muses-C Mission Links

  • Bar-Cohen's research
  • MUSES-C Site At ISAS
  • MUSES-CN Rover Fact Sheet (3 Page PDF File)

    Muses-C Reports At SpaceDaily

  • Planning Begins On Asteroid Rover

  • NEAR Mission Control
  • NEAR Press Kit (PDF 1.3MB)
  • Discovery Program
  • Planetary Society Near Earth Objects Page

    Asteroid and Other Debris at Spacer.Com

  • Comets and Asteroids Get PEPE
  • Get Ready For Deep Space 1
  • Why Study Asteroids?
  • Deep Space 1 Asteroid FlyBy
  • Hubble's Archive of Asteroids
  • Kuipers Reflect In Two Colors
  • Iowa Exploring Sol's Outer Reaches
  • Stardust Spacecraft Assembly Starts
  • Ice and Fire Missions Move Ahead
  • Meteorite Contaminated By Antarctic
  • Flash, Splash and its Over
  • Near Earth Asteroid Opportunities
  • Mathailde 253 A Battered Shell
  • Meteor Fell On Greenland
  • Mini Comets Just Noise?
  • Meteorite Contains No Biological Life

    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

    SpaceDaily Contributor
    $5 Billed Once

    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly

    paypal only

    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.