. 24/7 Space News .
Green Bank Reveals Satellite Of Milky Way In Retrograde Orbit

Artist's rendition of the path of satellite galaxy Complex H (in red) in relation to the orbit of the Sun (in yellow) about the center of the Milky Way Galaxy. The outer layers of Complex H are being stripped away by its interaction with the Milky Way. The hydrogen atmosphere (in blue) is shown surrounding the visible portion (in white) of the Galaxy. CREDIT: Lockman, Smiley, Saxton; NRAO/AUI
Green Bank - May 26, 2003
New observations with National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) suggest that what was once believed to be an intergalactic cloud of unknown distance and significance, is actually a previously unrecognized satellite galaxy of the Milky Way orbiting backward around the Galactic center.

Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, discovered that this object, known as "Complex H," is crashing through the outermost parts of the Milky Way from an inclined, retrograde orbit. Lockman's findings will be published in the July 1 issue of the Astrophysical Journal Letters.

"Many astronomers assumed that Complex H was probably a distant neighbor of the Milky Way with some unusual velocity that defied explanation," said Lockman.

"Since its motion appeared completely unrelated to Galactic rotation, astronomers simply lumped it in with other high velocity clouds that had strange and unpredictable trajectories."

High velocity clouds are essentially what their name implies, fast-moving clouds of predominately neutral atomic hydrogen. They are often found at great distances from the disk of the Milky Way, and may be left over material from the formation of our Galaxy and other galaxies in our Local Group.

Over time, these objects can become incorporated into larger galaxies, just as small asteroids left over from the formation of the solar system sometimes collide with the Earth.

Earlier studies of Complex H were hindered because the cloud currently is passing almost exactly behind the outer disk of the Galaxy. The intervening dust and gas that reside within the sweeping spiral arms of the Milky Way block any visible light from this object from reaching the Earth.

Radio waves, however, which have a much longer wavelength than visible light, are able to pass through the intervening dust and gas.

The extreme sensitivity of the recently commissioned GBT allowed Lockman to clearly map the structure of Complex H, revealing a dense core moving on an orbit at a 45-degree angle to the plane of the Milky Way.

Additionally, the scientist detected a more diffuse region surrounding the central core. This comparatively rarefied region looks like a tail that is trailing behind the central mass, and is being decelerated by its interaction with the Milky Way.

"The GBT was able to show that this object had a diffuse 'tail' trailing behind, with properties quite different from its main body," said Lockman. "The new data are consistent with a model in which this object is a satellite of the Milky Way in an inclined, retrograde orbit, whose outermost layers are currently being stripped away in its encounter with the Galaxy."

These results place Complex H in a small club of Galactic satellites whose orbits do not follow the rotation of the rest of the Milky Way. Among the most prominent of these objects are the Magellanic Clouds, which also are being affected by their interaction with the Milky Way, and are shedding their gas in a long stream.

Since large galaxies, like the Milky Way, form by devouring smaller galaxies, clusters of stars, and massive clouds of hydrogen, it is not unusual for objects to be pulled into orbit around the Galaxy from directions other than that of Galactic rotation.

"Astronomers have seen evidence that this accreting material can come in from wild orbits," said Butler Burton, an astronomer with the NRAO in Charlottesville, Virginia.

"The Magellanic clouds are being torn apart from their interaction with the Milky Way, and there are globular clusters rotating the wrong way. There is evidence that stuff was going every-which-way at the beginning of the Galaxy, and Complex H is probably left over from that chaotic period."

The new observations place Complex H at approximately 108,000 light-years from the Galactic center, and indicate that it is nearly 33,000 light-years across, containing approximately 6 million solar masses of hydrogen.

Radio telescopes, like the GBT, are able to observe these cold, dark clouds of hydrogen because of the natural electromagnetic radiation emitted by neutral atomic hydrogen at radio wavelengths (21 centimeters).

Globular clusters, and certain other objects in the extended Galactic halo, can be studied with optical telescopes because the material in them has collapsed to form hot, bright stars.

The GBT is the world's largest fully steerable radio telescope. It was commissioned in August of 2000, and continues to be outfitted with the sensitive receivers and components that will allow it to make observations at much higher frequencies.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under a cooperative agreement with Associated Universities, Inc.

Related Links
National Radio Astronomy Observatory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Yale Astronomers Discover Remains of Ancient Galaxies in the Milky Way
New Haven - Jan. 8, 2001
Two Yale astronomers have discovered that, contrary to previous beliefs, the area around the Milky Way contains the remains of small galaxies that were torn apart by the Milky Way's gravity.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.