. 24/7 Space News .
Los Alamos Pressure Process Makes Pure Zirconium Glass

illustration only
Los Alamos NM (SPX) Jul 16, 2004
Zirconium may not be a girl's best friend, but by squeezing the metal with roughly the same pressure needed to make diamonds, scientists at the University of California's Los Alamos National Laboratory made a pure glass that may prove nearly as valuable as real diamonds.

The pure metallic glass formed by their high-pressure method holds promise for stronger, more stable materials for medical, sports and electronic products.

Yusheng Zhao and Jianzhong Zhang, both from Los Alamos' Lujan Neutron Scattering Center, have found that pure zirconium metal forms glass at temperatures roughly one-third of zirconium's melting temperature and static pressures around five billion pascals, or more than 50,000 times atmospheric pressure. They published their findings in the July 15 edition of Nature.

"This is the first time that bulk metallic glass has been formed from a single element or pure metal," Zhao said.

"By using industrial pressure processes to make pure samples without the defects that appear in metallic glasses made the conventional way, we've identified a method with potentially important commercial applications."

Bulk metallic glasses have found more and more uses in the past 15 years or so, and have begun replacing some conventional materials such as crystalline metals, metal alloys and high-tech ceramics.

Among current applications are structural engineering materials, consumer electronic components, jewelry, replacement joints and skis, tennis rackets, golf club heads and other gear that requires lots of rebound.

Although novel, bulk metallic glasses are highly desirable. They resist breaking when stretched, they keep their shape and they are hard to shatter. In scientific terms, they possess high elastic strain limit, high yield strength and fracture toughness.

They behave elastically like polymers but are much stronger than metal alloys, characteristics that make them ideal for structural engineering materials and many other applications.

But all the bulk metallic glasses contain three or more component elements, which means they have lower thermal stability and phase separation at high temperatures, Zhao said.

"We've broken with the conventional wisdom that BMGs can only be produced from multicomponent alloys and only with the conventional approach of melting and fast quench," he explained.

Zhao said one of the most remarkable characteristics of the amorphous or glass zirconium they produced is its thermal stability.

The Los Alamos samples remain as glass at temperatures above 1,600 degrees Fahrenheit - more than 400 degrees higher than the temperatures at which they were formed - and pressures of 2.8 billion pascals.

Traditional BMGs turn to crystals, and thus lose many important properties, at temperatures as low as 800 degrees F.

Zhao and Zhang used a large-volume press to produce samples of millimeter size, but the relatively low pressure and temperature range allows them to make samples of up to an inch, so their process could be scaled up to industrial conditions.

Some previous high-pressure experiments used diamond-anvil cells to form amorphous phases from other crystalline materials, with much smaller sample sizes of a few thousandths of a millimeter.

"One of the key reasons for the success of our experimental method was the high purity of the polycrystalline zirconium metal that we were given by our colleagues Paulo Rigg and Rusty Gray," Zhao said.

"We worked with them on zirconium equation of state studies at high pressures and temperatures, as well as phase diagram studies."

Much remains to be learned about the new class of pure glass. Zhao and Zhang have tried to duplicate their experiments with commercial-grade zirconium, but found that higher temperatures and pressures were needed to make the glass, and it didn't retain its characteristics when pressures and temperatures returned to normal. They plan follow-up experiments to try to solve this dilemma.

All the experimental work took place at Los Alamos Neutron Science Center's HIPPO flight path, and the synchrotron X-ray beam lines at Argonne and Brookhaven national labs. The Lujan Center is supported by the U.S. Department of Energy's Basic Energy Sciences program. Funding of early work on pressure forming of bulk glass alloys came from the internal Laboratory Directed Research and Development program.

Related Links
Los Alamos National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

NASA Glenn's Work In Art Restoration Recognized By Nortech
Cleveland OH (SPX) Jul 13, 2004
NASA's Glenn Research Center, Cleveland, was recently awarded a 2004 NorTech Innovation Award for development of a technology that brings works of art back to life.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.