. 24/7 Space News .
Where on Earth Is Mars?

port holes to another world.
Marc Boucher Photo
Pasadena - Nov 19, 2002
Among the thousands of visitors to Mt. Etna this year, one group came not just to look at one of most famous volcanoes on Earth. Dozens of scientists trekked up Etna together this fall to observe what Etna has in common with Mars.

Researchers interested in what makes the red planet tick can't study the planet in person-at least not yet. To help them interpret what they see in Mars images and other remote sensing data--and to test their instruments and procedures--they turn to Earth.

Though the two planets are very different, Earth offers many similarities, or analogs, to Mars. Some of these, such as Antarctica, are definitely off the beaten track. Others, however, such as Mt. Etna, are places where ordinary travelers might find themselves-- although perhaps unaware that what they're seeing is anything like our neighboring planet.

"A site can be like Mars in a variety of ways," says JPL geologist Dr. Tom Farr, one of the participants in the "Exploring Mars' Surface and its Earth Analogues" workshop at Mt. Etna. "Since Mars is really cold, the first places you think of are Antarctica and the Arctic. These places provide a way to see some of the processes that probably take place on Mars- glaciers and permafrost. But a place can also be like Mars by having similar geological features, such as volcanoes, or processes like erosion and weathering."

Volcanoes in Common
The prominent volcanoes on Mars are large, old and apparently no longer active. "Though small by Mars' standards, Etna, like the majority of volcanoes on Earth, is basaltic," says Mars Odyssey Project Scientist Dr. Jeffrey Plaut, who was also in the Etna workshop. "We believe that Mars' volcanoes have the same composition."

Etna also has an example of a volcanic process that scientists think may occur on Venus, the Moon, and possibly Mars, but until recently hadn't been seen before on Earth. "We see some long narrow channels on those planets that don't look like they were eroded by water," says Farr. "We inferred that they were produced by lava, but until their discovery on Etna, we had never actually seen that happen."

Not all of Earth's volcanoes match those on Mars. "Mt. St. Helens is not a good analog," says Plaut, "it's silica-rich and is a result of plate tectonics that do not seem to occur on Mars". For good examples of large shield volcanoes, the most common type on Mars, Plaut picks Mauna Loa and Kilauea. "The big island of Hawaii, which is the largest volcano on Earth, has been a tremendous Mars analog."

On Mars, super-sized volcanoes sculpted the landscape by releasing huge amounts of lava. It's possible to see what that sort of event did on Earth along the Columbia River in Washington. "Some of the largest lava flows on Earth took place there," says Plaut. The area was repeatedly flooded by lava, which formed the great basaltic cliffs called the Columbia River Basalts. And in Idaho's Snake River Plain, "rift lava seeped over a large flat surface creating a volcanic plain that serves as a good terrestrial analog for extensive sheet lavas on Mars as well as Venus and the Moon," says Farr.

Mars in the Desert
Earth's deserts have many examples of geological processes at play on Mars.

"Processes in arid environments tend to create dunes and landforms eroded and etched by winds like those we see on Mars," says Plaut. "We also like the desert because there's not much vegetation and the geology is exposed at the surface as it is on Mars."

Drier and cooler than most deserts, the Atacama in Chile is often considered a Mars analog. In the warm deserts of Tunisia at the edge of the Sahara and California's Mojave, wind-blown sand creates Mars-like dunes and landforms.

Deserts in North Africa, China, Asia, and North America are home to wind-sculpted ridges known as yardangs, also common in the Martian landscape.

On both planets, some of today's deserts were probably yesterday's lakes.

The same process that created Utah's Bonneville Salt Flats may have shaped the dry lakebeds that dot the Martian landscape. "Mars seems to have had catastrophic floods," says Plaut. "not unlike those that took place in the Bonneville area in the ice age. As the glaciers retreated, the rapid draining of a large lake carved up the landscape creating distinctive landforms. There was a lot of water and a lot of energy."

One of the most famous planetary analogies and laboratories is Death Valley.

"It's like Mars in its tectonic, erosional and sedimentation processes," says Plaut. "It looks like Mars, too. There's a spot called Mars Hill that reminds people very much of the Viking 2 Lander site."

Impact Zone
Many a meteor made its last stop on Mars and on Earth. Mars' surface is pockmarked with impact craters. Here on Earth, most are buried or have eroded away. The Haughton Crater on Devon Island in the Canadian Arctic is a well-known site for Mars-related studies. More accessible is the meteor crater in Winslow, Ariz. "It's fairly recent," says Plaut, "and well-preserved, like many we see on Mars."

Geology may not be all that Mars and Earth have in common. In the search for life in extreme environments, like those which may exist on Mars, researchers are looking in places like Yellowstone and Hot Springs, Ark.

"Because the Mars environment is so cold and dry, getting liquid water to the surface today may require hot spring activity," says Plaut. "But people are studying all kind of ground water environments, hot or not, and caves as possible Mars analogs."

As Mars exploration continues, new common ground between that planet and this one is likely to emerge. "Even as we learn more about Mars from the new missions," says Farr, "we'll go out and try to find places on Earth that are similar, continuing our search for better Mars analogs."

Related Links
Mars At JPL
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Chandra Snaps Mars In X-Ray Vision
Huntsville - Nov 14, 2002
This remarkable image from the Chandra X-ray Observatory image gave scientists their first look at X-rays from Mars. In the sparse upper atmosphere of Mars, about 75 miles above its surface, the observed X-rays are produced by fluorescent radiation from oxygen atoms.

New Institute Aims To Foster Mars Exploration In 21st Century
Los Angeles - Oct 21, 2002
Members of the founding Board of Directors of the Mars Institute formally unveiled the new organization today at the World Space Congress.

Exploring Mars Beyond 2010
Los Angeles - Sept 27, 2002
In 2001, NASA invited five major aerospace firms to develop designs for sample return missions and estimate their cost. But at nearly a $2 billion a pop the Bush Administration said no way. Meanwhile, the sheer technical difficulty of such missions, and the huge number of completely new and as-yet untested technologies required, 2016 looks the earliest scientists will get to unbox pristine Martian rocks.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.