Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Living Off The "Land" Critical To Long Term Moon, Mars Habitation

Dr. Mike Duke, a geologist, leads research at a mining school an ideal place for studying how to dig up lunar and Martian soil. Duke and a team of graduate students designed this wheel of buckets to scoop up lunar and Martian soil. The entire device mounts on an arm extending from the front of a robotic excavator. Duke is the director of the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines in Golden. It is one of NASA's 15 Research Partnership Centers managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala.(Center for Commercial Applications of Combustion in Space)
Huntsville AL - Mar 24, 2004
Sludge. That's what most people think of when they envision the gray, powdery soil called regolith covering the airless surface of the Moon. Not Dr. Mike Duke. He sees gold.

Gold in the form of rocket propellant, power, and even breathable air all things that will be as valuable as gold to the first Moon-dwellers.

"As a young man, I wanted to go to the Moon," says 68-year-old Duke, who was one of the first geologists to study samples from Moon rocks collected during the Apollo missions in the 1970s.

"I may be too old to make the trip when Americans return to the Moon, but the research I am leading will help the first lunar settlers take what's there and make something practical."

Duke is an expert in what space explorers call "in-situ resource utilization" or ISRU living off the land of an alien world. In 2003, he was named director of the Center for Commercial Applications of Combustion in Space Centers at the Colorado School of Mines in Golden one of NASA's 15 Research Partnership. He joined the partnership center in 2000 and uses skills he honed during his 25-year career as a NASA geologist.

In 1965, he was a candidate for NASA's Scientist Astronaut Program, made the finals, but wasn't selected to fly. He went on to help other space explorers, from 1976 until 1990 as the director of the Solar System Exploration Division and from 1990 to 1995 as the chief scientist for the Human Exploration Program both at NASA's Johnson Space Center in Houston.

"We can't take everything to the Moon or Mars with us," Duke says. "Today, it would take about 100,000 dollars to get a couple pounds of material moved from Earth to the Moon. So making propellant on the Moon would make trips back to Earth or on to Mars less expensive."

Before you can process the lunar soil and turn it into rocket propellant or other useful materials, you have to figure out a way to mine it. For four years, Duke and a team of graduate students have been working on a robotic excavator.

They built a prototype that weighs around a hundred pounds and has a chassis similar to the NASA rovers Spirit and Opportunity on Mars now. An arm-like boom extends from the vehicle's front end. It sports a wheel of buckets that scoop up soil.

The dirt falls out of the buckets and into a conveyer system that takes it up the side of the boom. The arm moves from side to side and excavates a swath of dirt one and a half feet wide, the width of the excavator.

The current model can dig up several hundred pounds of dirt in an hour, but the team is working to increase the excavation rate. They also are designing a system to shoot the dirt from the excavator to a "lunar dump truck."

The truck would carry the soil to a processing facility to extract hydrogen a component of the fuel that powers the Space Shuttle and could fuel a lunar rocket.

Duke and his students also have completed a model that identifies lunar resources and their potential uses. The team even examined how a company could make money on the Moon, and came up with a scenario for a "space filling station" where in-space tugs would be loaded with lunar-made propellants and used to boost communications satellites to high orbits.

Why is Duke concerned with space business ventures? Collaborating with industry to explore the solar system is one of the goals of the Research Partnership Centers managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala., for NASA's Office of Biological and Physical Research, Washington.

"NASA's Research Partnership Centers bring together industry, academia and government to advance exploration in space," says Duke. "These collaborations are an effective way to create new technologies at lower costs."

One of the aspects Duke most enjoys about his job is creating new opportunities for students to conduct original research that will help advance space exploration.

"I studied geology at Caltech because I loved California 's mountains and deserts," recalls Duke, a Los Angeles native who earned his doctorate degree in 1963 from the California Institute of Technology in Pasadena.

"But the university was a hotbed for planetary science, and my professors inspired me to study the geology of meteorites and the Moon. I want my students to become the next generation of scientists and engineers who take America to the Moon and beyond."

One recent project that students helped design was the water mist investigation, conducted in space to examine how to fight fire with a fog-like mist of water instead of large amounts of water that can damage computers and other equipment. The STS-107 Space Shuttle crew completed the experiment during their January 2003 flight.

Although the experiment equipment was lost in the Columbia accident, the team received data from video sent back to Earth during the mission. They are using the data to design a space fire extinguisher for contained environments such as spacecraft, space habitats and submarines.

Related Links
Center for Commercial Applications of Combustion in Space
Office of Biological and Physical Research
Space Partnership Development Program
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Can Mars Be Made Into An Oasis
Moffett Field - Mar 12, 2004
Locally, Earth has its habitable extremes: Antarctica, the Sahara desert, the Dead Sea, Mount Etna. Globally, our blue planet is positioned in the solar system's habitable zone, or 'Goldilocks' region where the temperature and pressure are just right to support liquid water and life. Across the borders from this goldilocks zone orbit our two neighbors: the runaway greenhouse planet, Venus--which in goldilocks' terms is 'too hot'--and the frigid red planet, Mars, which is 'too cold'.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.