. 24/7 Space News .
Footprints On The Moon

Alan Shepard's contraband six-iron and the only golf shot on the moon. Before climbing back into the lunar module, Shepard took out of his suit pocket "a little white pellet that's familiar to millions of Americans" - a golf ball - and dropped it on the surface. Then, using the handle for the contingency sample return container, to which was attached "a genuine six-iron," he took a couple of one-handed swings. He missed with the first, but connected with the second. The ball, he reported, sailed for "miles and miles." Credit: NASA
by Astrobiology Magazine
Moffett Field CA (SPX) Aug 30, 2004
The Moon preserves unique information about changes in the habitability of the Earth-Moon system. This record has been obscured on the Earth by billions of years of rain, wind, erosion, volcanic eruptions, mountain building, and plate tectonics.

In contrast, much (most?) of the lunar surface still contains information that reflects events at the time of life's origin and subsequent evolution on Earth. Therefore, lunar research can address critical astrobiology science questions.

In particular, the lunar record allows us to focus on two specific issues in the early solar system - the history of impacts and the history of exposure to radiation.

The Moon, as Earth's closest neighbor, is probably the only body in the solar system where we can address these issues quantitatively. Impacts probably played an important role in the earliest history of life on Earth.

Large impacts would have temporarily altered the environment and creating hostile conditions in which life could not survive. Later impacts probably shaped life's evolution by forcing successive mass extinctions of large numbers of species.

The terrestrial impact history is better recorded on the Moon than on the Earth.

Central science goals are to determine the impact rate onto the Moon (and, by extension, the Earth) during the period when life was originating early in solarsystem history, as well as in geologically recent times.

We can use the beautifully preserved record on the Moon to help us to understand the habitability of the Earth at the time of life's origin and earliest evolution and determine the frequency of impact-driven mass extinctions and the subsequent course of evolution.

During Earth's earliest history, its surface also was bombarded by high-energy particles associated with solar activity (from a solar wind that was enhanced during early history and from solar flares) and galactic cosmic rays, and possibly from nearby supernovae and events associated with gamma-ray bursts.

This bombardment must have had deleterious effects on life at the Earth's surface, and may have severely affected the formation and earliest evolution of life.

The Moon's surface provides the best and most accessible record of the bombardment history of the Earth and the inner solar system, including changes through time in the mass flux and in the size distribution of impacting objects.

The existing data for radiometric ages of returned lunar rocks and for crater densities on the lunar surface are the primary basis for our present understanding of the early bombardment history of the inner solar system and the early Earth (>3.5 Ga).

These data constitute one of the most profound scientific legacies of the Apollo program.

These ancient events are recorded in the lunar regolith, formed throughout lunar history by the impact of micrometeorites and which were buried and preserved by subsequent lava flows.

Regolith forms continually at the lunar surface as a result of the bombardment by micrometeorites, which break up surface rocks. At present formation rates, a layer up to 2 m thick can be created in a billion years that consists of fine, powdered rock.

Sampling the effects of this radiation within these fossil regoliths, then, provides a window into the energetic-particle environment at the time that the regolith was buried, and sampling many different locations can provide detailed information over time.

"Fossil" regoliths formed when such material was buried by lava flows or impact ejecta, thus protecting the previously exposed regolith from subsequent alteration.

Many of these flows presumably buried ancient regolith, and some specific examples are known, such as Hadley Rille at the Apollo 15 landing site. These can be accessed by trenching, by drilling, in the walls of rilles, or at sites where impacts have done the excavation for us.

Robotic sample return missions would return collected samples to the Earth, where highprecision geochronology and trace-element analyses could be carried out.

Human exploration missions would permit detailed documentation of collected samples, field study of their context, and traverse geophysics that can allow us to better understand the character of the craters or basins.

The highest-priority matters would include the following:

Potential for finding ancient Earth rocks on the Moon

The importance of finding ancient Earth materials on the Moon was mentioned previously. If such materials could be identified and were not severely altered by the ejection and impact processes, they would provide a unique and truly exciting window into the early Earth.

Similarly, there exists the potential for finding ancient samples from Mars or even Venus, as well as unweathered carbonaceous chondrites.

Processes related to the origin of the Moon

We can use the impact rate onto the early Moon to understand stochastic collisional processes that occurred within the inner solar system and that were related to lunar formation.

In addition, samples from additional locations beyond those already obtained during the Apollo era can help us to understand the bulk chemical composition of the Moon for comparison with Earth and other terrestrial planets and the chronology of events at the time of lunar origin.

Characteristics, formation, and evolution of primordial crust

The lunar highlands represent the first crust formed after global melting on the Moon, and other terrestrial planets presumably would have had a similar early crust.

If we are to understand the evolution of planetary surfaces, we must understand these initial crusts as well. The primordial lunar crust is the best-preserved, and possibly the only, example we have.

Evolution of an end-member planetary object. A key issue in astrobiology is to understand the processes responsible for the geological and geophysical evolution of terrestrial planets.

In our solar system, the Moon is the smallest of these objects, and determining how interior processes and their coupling to the surface geology occurred over time should constrain how similar processes might play out (or have played out) elsewhere.

Organic chemistry recorded in the polar regions

Studies of the organic chemistry of ices and soils from the lunar polar regions may serve as an accessible analog of radiation-driven processing that occurs on interplanetary dust grains.

As the organic molecules resulting from such processes may have played a significant role in the origin of life on Earth, it is important to understand the processes in more detail.

Evaluation of how water and other volatiles were added to the Earth

By examining the volatile content of meteoritic contaminants in the lunar regolith and of volatiles cold-trapped at the lunar poles, we can determine their chemical and isotopic composition and possible source regions.

This will help us to determine how volatiles might have been added to the early Earth, and to understand why the Earth has the volatile inventory that it does.

This study is complicated, however, by the possibility that polar volatiles and meteoritic debris are relatively recent arrivals on the Moon and, therefore, do not reflect conditions while the Earth and Moon were forming.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Moon Written In Stone
Moffett Field CA (SPX) Aug 02, 2004
Scientists have pinpointed the source of a meteorite from the moon for the first time. Their unique meteorite records four separate lunar impacts.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.