. 24/7 Space News .
Fossil Genes Reveal How Life Sheds Form And Function

king of earth for millions of years
Madison WI (SPX) Sep 21, 2004
Reading the fossil record, a paleontologist can peer into evolutionary history and see the surface features that plants and animals and, occasionally, microbes have left behind.

Now, scouring the genome of a Japanese yeast, scientists have found a trackway of fossil genes in the making, providing a rare look at how an organism, in response to the demands of its environment, has changed its inner chemistry and lost the ability to metabolize a key sugar.

The finding is a snapshot of evolution at work showing, at the most fundamental level, how traits and features are discarded by virtually all forms of life when they are no longer needed.

"Many people think evolution is always happening in a forward direction," that new features are just tacked on, says Sean B. Carroll, a professor of molecular biology at the Howard Hughes Medical Institute at the University of Wisconsin-Madison. "The other side of the coin is that we lose things. Losses as well as gains make up the story of evolution."

Writing Sept. 20, in the Proceedings of the National Academy of Sciences, Carroll and colleagues Chris Todd Hittinger and Antonis Rokas describe the discovery of a set of seven genes caught in the act of fossilization.

In the Japanese yeast, known to scientists as Saccharomyces kudriavzevii, the Wisconsin scientists found the decaying genes that, when intact, are all functionally related and make up a pathway that permits the organism to convert the sugar galactose to energy.

The same pathway, among the most studied in biology, exists not only in yeasts, but also in virtually all other microbes, as well as plants and animals, including humans.

Their sole function is devoted to the utilization of galactose, suggesting that the yeast experienced an ecological shift that somehow removed galactose from the organism's menu, thereby making the galactose-processing genes obsolete.

The relic genes, according to Hittinger, are "full of holes," where numerous DNA bases - the building blocks of all genes - have been edited out through mutation to terminate the physiological message they were responsible for transmitting along the pathway.

"Genes become fossilized if there is no use for them," says Rokas. "If you relax the pressure on the genes to zero, mutations will begin to accumulate. This steady bombardment of mutations will erase the genes over time."

However, there is a window of preservation before the genes are wiped completely away, leaving relics as diagnostic as any fossil bone and providing scientists with important clues to biological functions discarded as an organism adapts to its environment.

Indeed, probing the genomes of three other species of yeast that are unable to metabolize galactose, the Wisconsin scientists found the genetic pathway almost completely absent from all three, with only a single remaining gene marking the pathway like a faded signpost.

"Evolution repeats itself," Carroll says. "What we see is that three or four times, these genes have been junked in different species. The process of sweeping these genes away is more complete in these other species."

Relic genes, sometimes called pseudo-genes, have been found elsewhere, including humans. Fossil olfactory genes tell the story of how humans came to depend more on sight as color vision displaced a sense of smell that, in the distant past, was far superior to what humans enjoy today.

In the Japanese yeast, the seven fossil genes that make up the eroding pathway are "still in the same place (on the genome) they are in neighboring species," says Carroll. "What we have is a picture of an entire set of genes performing related functions becoming fossilized.

"To see this, the change has to be relatively recent. Sometime in the last 5 to 10 million years the pressure (on these genes) started to relax," Carroll explains.

Related Links
University of Wisconsin-Madison
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Nanobac Life Sciences Announces Space Act Agreement With NASA
Tampa FL (SPX) Sep 17, 2004
Nanobac Life Sciences, Inc. is pleased to announce the signing of a Space Act Agreement with NASA's Johnson Space Center (JSC), Houston Texas, to collaborate on research on Nanobacteria and its nature and role in pathological calcification, including the detection and treatment of the pathogen.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.