. 24/7 Space News .
Purdue Researchers Connect Life's Blueprints With Its Energy Source

One promising application of RNA-ATP binding is this microscopic motor, assembled by Peixuan Guo's team at Purdue University. The motor, only a few nanometers wide, is formed by six strands of RNA surrounding an "axle" made of DNA. When fed a supply of ATP as fuel, the RNA molecules kick against the DNA in succession, much like the pistons in a conventional motor. (Graphic/Guo Laboratory)
West Lafayette - Feb 06, 2003
The Purdue University research team that recently created a tiny motor out of synthetic biological molecules has found further evidence that RNA molecules can perform physical work, a discovery that could advance nanotechnology and possibly solve fundamental mysteries about life itself.

Purdue's Peixuan Guo has discovered how viral RNA molecules bind an energy-bearing organic molecule known as ATP. While linking these two substances might seem to create no more than a longer string of letters, the upshot is that now one of life's most mysterious and ancient storehouses of information can be moved by one of its most important fuels. The discovery could shed light on the fundamental role RNA plays in the creation of living things.

"RNA could be even more of a key player than we realize," said Guo, professor of veterinary pathobiology in Purdue's School of Veterinary Medicine. "The fact that it can be made to bind ATP in the phi29 virus could imply that these two molecules were among the first to partner in Earth's dance of life."

On a more practical level, the discovery could have immediate technical applications � such as driving a Lilliputian motor of the sort Guo's team has recently constructed.

"I think RNA can be made to do mechanical work," he said. "ATP binding could power a motor made of six strands of RNA, and we are now exploring the myriad possible applications of such a tiny mechanism."

The research appears in the February Journal of Biological Chemistry.

DNA, RNA and ATP are substances long known to be central to life's processes, but knowledge about their many functions in living things is still emerging.

Several years ago, scientists were stunned by the discovery that some forms of RNA � well-known as the "messenger molecule" that carries instructions between DNA strands in a cell's nucleus � could serve as a catalyst for important chemical reactions in the body.

The discovery of these RNA catalysts, called ribozymes, convinced many scientists that RNA probably existed on earth before DNA or complex proteins, the two other ingredient molecules necessary to create life.

"There are thousands of kinds of RNA in your body," Guo said. "Most varieties have an unknown function. When ribozymes were discovered, it taught us that RNA was probably responsible for the creation of other complex biological molecules. RNA might be more significant to life on earth than we imagined a few years ago."

Guo's group has discovered another way that RNA might be the keystone for biological processes: they have found that it is able to bind adenosine triphosphate, or ATP, which is the crucial substance used to transfer metabolic energy in living things.

"You couldn't live for one second without ATP," Guo said. "Your muscles, for example, are able to flex because an enzyme called ATPase binds the ATP molecule, breaking one of ATP's chemical bonds and releasing the energy you use when walking or talking."

Guo theorizes that because RNA can also bind ATP, it might be not only life's original seed molecule, but also able to direct the release of the energy needed to create life from that seed.

"We are just beginning to learn about RNA's many functions," he said. "But it is possible that it plays a crucial role in metabolism, too. In that case, RNA would play a more central role in biology than we originally thought. We are seeking fundamental knowledge here."

It is uncertain whether the RNA in living things has ever directed any of ATP's actions, but for the moment, Guo's group has already found a way to make ATP move RNA around.

His team has learned to assemble several strands of RNA into a hexagonally-shaped "engine" with a strand of DNA functioning as the axle. When fed a supply of ATP fuel, the RNA strands kick against the axle in succession, much like pistons in a combustion engine. Such minuscule motors could find applications in nanotechnology.

"The world's smallest machines will need equally small motors to propel them," Guo said. "Ours uses organic molecules as fuel, so no special power source would need to be developed."

The motors could also be used not only to spin the DNA strand, but also as potential gene delivery vehicles. Guo's team had already found that the motor could drive its axle into a virus' protein shell, and has recently also learned that the ATP-binding RNA derived from the phi29 virus can deliver a ribozyme that destroys Hepatitis B. A paper detailing this work is forthcoming in the journal Gene Therapy.

"Delivering healthy genes or therapeutic molecules into damaged cells is the goal of gene therapy," Guo said. "With some modifications, we hope our research will enable us to deliver therapeutic molecules to cancerous or other virus-infected cells as well."

Guo's current research is headed in this direction, but he emphasizes that more work also needs to be done on RNA's fundamental capabilities.

"We would like to find other examples of how RNA operates in the body," Guo said. "We know from our research that RNA can be made to perform physical work in a viral system and in the laboratory, so it is possible that it is also involved in the transportation of components within cells."

Such ideas remain speculative for the moment, but Guo said that naturally occurring hexagonal loops of other RNA have been found performing protein transport in drosophila fly embryos.

"The RNA loops in these developing flies are similar to the loops we assembled," he said. "It's a clue that we may be on the right track."

Funding for this research has been provided in part by the National Institutes of Health and the National Science Foundation.

Related Links
Purdue
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Rice University Announces NanoTech Deal With IBM
Houston - Jan 30, 2003
Rice University today announced a research agreement with IBM that will provide nanotechnology researchers at Rice's Center for Biological and Environmental Nanotechnology (CBEN) with a supercomputer powerful enough to decipher the quantum phenomena of carbon nanotubes and other nanomaterials.

NASA Breakthrough Method May Lead To Smaller Electronics
Moffett Field - Nov 26, 2002
NASA scientists have invented a breakthrough biological method to make ultra-small structures that may well be used to produce electronics 10 to 100 times smaller than today's components.

Theoretical Biological Physics To Get New $10 Million Research Center
La Jolla - Sep 26, 2002
A consortium of research institutions in La Jolla, Calif., has been awarded $10.5-million over the next five years from the National Science Foundation to establish the world's leading center in the emerging field of theoretical biological physics.

Building Nano Sized DNA Structures
Davis - Sep 19, 2002
A new method to make very small patterns of DNA molecules on surfaces has been developed by chemists at the University of California, Davis, and Wayne State University, Detroit. The technique could allow faster and more powerful devices for DNA sequencing, biological sensors and disease diagnosis.

Nanoantennas Could Bring Sensitive Detectors, Optical Circuits
 West Lafayette - Sep 02, 2002
Researchers have shown how tiny wires and metallic spheres might be arranged in various shapes to form "nanoantennas" that dramatically increase the precision of medical diagnostic imaging and devices that detect chemical and biological warfare agents.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.