. 24/7 Space News .
Inside Fossil Embryos Of Earth's Earliest Animals

File Photo: A SEM image depicting a suggested metazoan embryo � possibly Olivooides multisulcatus � at approximately the 256-cell stage. This is a Cambrian fossil, sample NGMC (National Geological Museum of China) 9351 from the upper beds of the Dengying Formation which overlies the Doushantuo phosphates at Shizhonggou, near Kuanchuanpu village, Ningqiang County, Shaanxi, China. The scale bar is 500�m. (Bengtson & Zhao 1997)
Denver - Oct 28, 2002
The shapes and internal structures of individual cells within some of the earliest multicellular animals have been revealed for the first time using technology normally associated with hospitals.

Paleontologists Whitey Hagadorn of Amherst College and Shuhai Xiao of Tulane University have revealed the internal structure of 600-million-year-old fossilized embryos using specialized microscopic three-dimensional x-ray computer tomography (microCT). Hagadorn will present preliminary findings from the ongoing research at the annual meeting of the Geological Society of America on Monday, October 28, in Denver, CO.

"It's not something you come across everyday, so when you do you grab your hat and dive in," said Hagadorn, regarding the rare Doushantuo phosphorite deposits in the Weng'an region of South China. Unlike most sedimentary deposits, the Doushantuo contains mineral crystals so remarkably miniscule that they can petrify and preserve cellular-level structures.

Although the microfossils of the Doushantuo have been previously studied under scanning electron microscopes, portions of their internal structure could not be figured out without slicing them up and destroying them in the process. To get around this, Hagadorn and Xiao employed the latest microCT technology to generate tantalizing preliminary images of nine animal embryos, three algal forms, and two still-undetermined fossils.

The 3-D images catch embryos in mid-development and make it possible to count cells in the embryos, discern the shapes and arrangements of the cells and even discern what might be structures within the cells. "By all accounts, it looks like there is a lot of information," said Hagadorn.

As for just what kind of animals these fossil embryos might be, that's still a big, controversial question, says Hagadorn. The animal groups they could represent include soft-bodied cnidarians (e.g. jellyfish, anemones), poriferans (e.g., sponges) or other organisms. "There's a lot of debate on that," he said. "No one out there has good enough data to confidently say what metazoan groups are represented by these embryos."

The Doushantuo phosphorite formation dates from 555 to 600 million years ago, which makes the fossil embryos good candidates for beating out the current oldest animal fossils: 555-million-year-old soft-bodied mollusks from the White Sea in Russia.

But more important than setting records, says Hagadorn, is what the fossils might tell us about the early evolution of animals and the kind of environment they lived in.

For instance, it might be possible to look at series of 600-million-year-old animal embryos that represent various stages of embryological development and compare them to the various development patterns of animal embryos today. "It speaks to the issue of where we come from," said Hagadorn.

The microCT works similarly to the CT scanners used to peer inside patients in hospitals. In both cases x-rays are used to non-destructively create a three-dimensional image out of a series of two-dimensional cross sections that showing different densities of materials inside an object. The difference is that CT scans of people require that the scanners rotate around the patient and that the smallest amount of x-rays is used to protect patients from excessive radiation.

X-rays don't harm rocks, however, so far more x-rays can be shot through them and even focused into tight beams to create microscopic images with a resolution on the scale of microns. That's essential in looking at fossil algae with range from about one to 20 microns across, and fossil embryos, which are 70 to 500 microns in diameter, says Hagadorn. What's more, rocks can be rotated instead of the scanners - which means there is less vibration during the imaging process, leading to sharper images.

Although microCT technology has been around for a few years, says Hagadorn, no one had previously thought to apply it to the Doushantuo fossils before. "So what we have here is a huge opportunity," said Hagadorn.

Related Links
Amherst College
About the Doushantuo Phosphorite Formation
Geological Society of America
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

First Animals May Have Lived 1.2 Bil Years Ago
Perth - May 10, 2002
In the May 10th issue of the weekly magazine Science, an Australian-Swedish team of scientists report fossil evidence that animal-like organisms were around more than 1200 million years ago.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.