. 24/7 Space News .
Life In The Rocks

Sulfide-eating bacteria from deep in the Earth has revealed genetic similarities in the microorganisms from different parts of the world, hinting that the existence of such life may be widespread throughout the planet's subsurface.
Seattle - Feb 22, 2002
In years past, scientific speculation about how life began on Earth envisioned primordial soups and slimy goo as the incubators in which the first tiny microorganisms developed, billions of years ago. More recently, microbiologists have examined places formerly seen as too harsh and inhospitable to foster biology, seeking answers about how life developed and adapts.

Hydrothermal vents, for example -- areas on the ocean floor that expel seawater superheated deep in the Earth's crust -- and the exotic creatures that live there have received increased attention.

Now scientists are scrutinizing another location for clues in unraveling some of life's riddles -- deep in the ground, underneath the planet's surface.

"We've pretty much left Darwin's warm little pond in the dust," said David Stahl, a University of Washington professor of civil and environmental engineering whose work focuses on ecology and evolution.

"The subsurface is being increasingly viewed as an important and largely unexplored part of the biosphere. Depending on how you calculate it, its biomass may exceed the biomass on the surface of the planet."

Stahl's work examining sulfide-eating bacteria from deep in the Earth has revealed genetic similarities in the microorganisms from different parts of the world, hinting that the existence of such life may be widespread throughout the planet's subsurface. Those microorganisms, he added, are among the more primitive, in terms of their metabolism, of Earth's life forms.

He and UW colleague James T. Staley, a microbiology professor in the School of Medicine, joined Abigail Salyers of the University of Illinois Urbana-Champaign and Edward F. Delong of the Monterey Bay Aquarium Research Institute for a the session "The New Biology of Rocks" at the annual meeting of the American Association for the Advancement of Science in Boston.

Stahl has spent the past several years gathering samples from wells drilled in eastern Washington for use as deep-injection sites to dispose of hazardous waste.

The drillers tapped into an artesian system and couldn't use the wells for disposal, so they were capped. Industry's loss was science's gain -- the wells provide ready access to tiny microorganisms that exist deep within the earth.

These deep subsurface habitats are are radically different from "surface" biology. They never see the sun, so energy from photosynthesis, which provides the platform upon which life on the Earth's surface is built, isn't an option. Oxygen and fixed carbon are scarce, so they must "eat" inorganic compounds -- such as hydrogen, CO2 and sulfate -- that originate from geothermal processes in the Earth's hot interior.

Stahl and his collaborators compared those bacteria with bacteria they extracted from deep in African gold mines and from geothermal springs in Yellowstone, and found some strong similarities based on comparative sequencing of genes.

That provides a yardstick for estimating evolutionary relationships among them. The studies suggest that the organisms are specialized for life in the subsurface and are very widely distributed on Earth.

So did life start in the rocks?

Stahl will be the first to bluntly say, "We don't know." But it's a new place to look for answers about biological diversity and how that diversity relates to environments that used to be seen as barren. And who knows what further research will uncover?

"There are some things that make it an attractive option -- at the time we think life arose, the Earth was undergoing almost constant bombardment by asteroids and the like, which should have been enough to kill anything that developed on the surface, including microorganisms," he said.

"This scenario would provide shelter from what was happening on the surface. But the bottom line, at this point, is that we really don't know enough to know. We're just getting to the point that we can start to ask these questions."

Related Links
University of Washington
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Antarctic Microbes Suggest Life Is Possible in Terrains On Mars
Tucson - Jan 14, 2002
Canadian and New Zealand scientists have found living microbes buried deeper than perhaps ever before in Antarctica's ice-free Dry Valleys. They and collaborating planetary scientists at the University of Arizona say new research "opens up the possibility of life on Mars and the possible positions within a soil where it might be found."



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.