. 24/7 Space News .
Astrobiologists to Launch Mission to Early Earth

"If we're going to look for evidence of life on Mars or beyond, then we have to know what we're looking for," says Ariel Anbar, professor of earth and environmental science at the University. "There is so much we don't know about the origin and early evolution of life. What chemicals must be present? What kind of atmosphere helps life start? What are the factors we haven't even thought of?<
Rochester - Nov 2, 2001
In what seems a cross between Jules Verne's Journey to the Center of the Earth and H. G. Wells' The Time Machine, researchers from the University of Rochester are burrowing deep underground into the most ancient regions of the globe to find the lost world where life began.

The endeavor, called The Mission to Early Earth, is part of the NASA astrobiology program. Astrobiology literally means "star life," but the NASA program is looking for life anywhere beyond our planet. To do that, however, an astrobiologist needs to know what he or she is looking for in the first place.

"If we're going to look for evidence of life on Mars or beyond, then we have to know what we're looking for," says Ariel Anbar, professor of earth and environmental science at the University. "There is so much we don't know about the origin and early evolution of life. What chemicals must be present? What kind of atmosphere helps life start? What are the factors we haven't even thought of?

"If you want to understand the probability of life being elsewhere, what that life might be like, and what the course of evolution might be, then you should be studying the only planet known to harbor life, and study the history of that planet."

Anbar is a member of one of NASA's astrobiology teams and a geoscientist, studying the planet to learn about its inhabitants. The greatest hurdle in trying to form a picture of what the world was like when life first formed is the scarcity of study samples. Old Earth simply doesn't exist anymore -- on the surface.

"We don't have a time machine, so we're stuck with old rocks," says Anbar. "But there aren't very many places you can find rocks that are billions of years old that haven't been ruined by exposure, so we're going to go subsurface."

"Subsurface" means drilling a couple hundred meters into the oldest known rock formations in the world. Anbar has just returned from Australia with his team on an exploratory mission to scout sites in parts of the Earth's crust that date to nearly 2.5 billion years old -- more than halfway back to the Earth's birth -- a time when the only life on the planet was bacteria.

The NASA-funded trip to the Outback turned up a number of possible drilling sites that Anbar thinks may yield samples of the Earth's environment that have remained frozen in time. Though there are some sites in the world that boast rocks as old as 3.8 billion years, the Australian rocks are relatively undisturbed by weathering and geological processes.

Anbar's team is especially excited at the chance to pull organic molecules from the ancient rock bed. Such molecules can speak volumes about the organisms that produced them and should shed light on the course that evolution took in life's infancy.

The first life forms may have had a biochemistry substantially different than today's, which means astrobiologists investigating Mars or other worlds would need to be looking for something totally unlike anything they may have assumed.

Anbar hopes to discover in what kind of environment astrobiologists should expect to find basic life. NASA hopes to launch space telescopes in the near future that will be able to pick out light from planets around distant stars.

But what kind of telescope NASA builds will depend on what scientists are looking for -- should it be tuned for an oxygen atmosphere or methane, or something else entirely? The answer to that will come from work like that of Anbar and his colleagues.

The Earth's basic chemistry was very different billions of years ago than it is now. It's widely accepted that the amount of oxygen in the atmosphere rose dramatically around 2.2 billion years ago, but there are a number of factors scientists don't know, not the least of which is, what completely changed the entire planet's atmosphere?

Anbar explains that the classical argument is that that was the time period when photosynthesis evolved and created oxygen, but there's good evidence that oxygen-producing photosynthesis is much too old, leaving scientists stumped when trying to explain the oxygen surge.

Scientists don't really know the exact living conditions on early Earth, and until they find evidence of the makeup of the atmosphere trapped inside ancient rocks, they'll have nothing but speculation.

"The odds are that we'll come across some surprises," says Anbar. "Some recent work by members of our team found that eukaryotes, the microbial line that humans came from, might have existed as early as 2.7 billion years ago.

That's much earlier than a lot of people thought, which means there was a lot more diversification of biology back then. So maybe we'll learn that life was almost inevitable, a kind of by-product of our Earth's formation. Or maybe we'll learn that we're more rare and special than we ever imagined."

Related Links
Anbar Group at University of Rochester
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
 Search For Martian Life Will Need Good Vibrations
Bradford - Oct 10, 2001
University of Bradford PhD student Emma Newton is playing a part in helping NASA's planned exploration of Mars in 2005, a trip which many people hope will lead to discovering life on the planet.

Researchers Find Glass-Eating Microbes at the Rock Bottom on Food Chain
San Diego - Oct 9, 2001
Welcome to the bottom of the deep-sea food chain. The rock bottom, that is. In the current edition of Geochemistry, Geophysics, Geosystems, a team of researchers uncovers and characterizes a process that is commonplace below the ocean bottom. In the upper 300 meters of the earth's oceanic crust, microbes were found to have literally eaten their way through rock.

Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space
Kitt Peak - October 1, 2001
Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space.

Bacterial Communities Found to Follow Water - Implications for Mars?
Tempe - Sept. 26, 2001
Miraculous things happen to the desert when it rains - everything changes from brown to green and organisms that have not been seen for months make a brief emergence from underground lairs.

Why Microbes Matter
Houston - Sept. 4, 2001
One of the most frequent questions that I have encountered when talking with people about astrobiology is, "If there are microorganisms on Mars, so what? Why should I be interested in the Martian equivalent of bacteria?" Here is my answer:

Permian Impact Caused Largest Mass Extinction on Earth
Boulder - August 27 2001
What actually ended the Permian Period some 251 million years ago? Most Earth scientists think gradual sea fall, climate change, oceanic anoxia, and volcanism were the causes. But that's not so. A group of geologists working in southern China found evidence that it was an asteroid or a comet that smacked our planet, exploded, and then caused the most severe biotic crisis in the history of life on Earth.

Advancing Our Understanding of Life
 Washington - Aug 21, 2001
Over the past two decades, advances in a number of scientific disciplines have helped us better understand the nature and evolution of life on Earth. These scientific developments also have helped lay the foundation for astrobiology, opening up new possibilities for the existence of life in the Solar System and beyond.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.