. 24/7 Space News .
Survival Of The Flattest

Dr. Chris Adami
Pasadena - July 23, 2001
Darwinian dogma states that in the marathon race of evolution, the genotype that replicates the fastest, wins. But now scientists at the California Institute of Technology say that's true, but when you factor in another basic process of evolution, that of mutations, it's often the tortoise that defeats the hare.

It turns out that mutations, the random changes that can take place in a gene, are the wild cards in the great race. The researchers found that at high mutation rates, genotypes with a slower replication rate can displace faster replicators if the former has a higher "robustness" -- or fitness -- against mutations; that is, if a mutation is, on average, less harmful to the slower replicator than to the faster one.

The research, to appear in the July 19th issue of the journal Nature, was conducted by several investigators, including Claus Wilke, a postdoctoral scholar, Chris Adami, who holds joint appointments at Caltech and the Jet Propulsion Lab, Jia Lan Wang, an undergraduate student, Charles Ofria, a former Caltech graduate student now at Michigan State University; and Richard Lenski, a professor at Michigan State.

In a takeoff of a common Darwinian phrase, they coin their work "survival of the flattest" rather than the survival of the fittest.

The idea is this: If a group of similar genotypes with a faster replication rate occupies a "high and narrow peak" in the landscape of evolutionary fitness, while a different group of genotypes that replicates more slowly occupies a lower and flatter, or broader, peak, then, when mutation rates are high, the broadness of the lower peak can offset the height of the higher peak. That means the slower replicator wins.

"In a way, organisms can trade replication speed for robustness against mutations and vice versa," says Wilke. "Ultimately, the organisms with the most advantageous combination of both will win."

Discerning such evolutionary nuances, though, is no easy task. To test an evolutionary theory requires generations and generations of an organism to pass. To make matters worse, the simplest living system, namely that which has been a precursor to all living systems on Earth, has been replaced by much more complicated systems over the last four billion years.

Wilke and his collaborators found the solution in the growing power of computers by constructing, via a software program, an artificial living system that behaves in remarkably lifelike ways. Such digital creatures evolve in the same way biological life forms do; they live in, and adapt to, a virtual world created for them inside a computer.

Doing so offers an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Though this research did not involve actual living organisms, one of the authors, Richard Lenski, is a leading expert on the evolution of Escherichia Coli bacteria. Lenski believes that digital organisms are sufficiently realistic to yield biological insights, and he continues his research on both E. coli and digital organisms.

In their digital world, the organisms are self-replicating computer programs that compete with one another for CPU (central processing units) cycles, which are their limiting resource.

Digital organisms have genomes in the form of a series of instructions, and phenotypes that are obtained by execution of their genomic program. The creatures physically inhabit a reserved space in the computer's memory -- an "artificial Petri dish" -- and they must copy their own genomes.

Moreover, their evolution does not proceed toward a target specified in advance, but rather proceeds in an open-ended manner to produce phenotypes that are more successful in a particular environment.

Digital creatures lend themselves to evolutionary experiments because their environment can be readily manipulated to examine the importance of various selective pressures.

In this study, though, the only environmental factor varied was the mutation rate. Whereas in nature, mutations are random changes that can take place in DNA, a digital organism's mutations occur in the random changes of its particular computer program. A command may be switched, for example, or a sequence of instructions copied twice.

For this study, the scientists derived 40 pairs of digital organisms that were derived from 40 different ancestors in identical selective environments.

The only difference was that one of each pair was subjected to a four-fold higher mutation rate. In 12 cases out of the 40, the dominant genotype that evolved at the lower mutation rate replicated at a pace that was 1.5-fold faster than its counterpart at the higher mutation rate.

Next, the scientists allowed each of these 12 disparate pairs to compete across a range of mutation rates. In each case, as the mutation rate was increased, the outcome of competition switched to favor the genotype that had the lower replication rate. The researchers believe that these slower genotypes, although they occupied a lower fitness peak and were located in flatter regions of the fitness surface, were, as a result, more robust with respect to mutations.

The digital organisms have the advantage that many generations can be studied in a brief period of time. But the researchers believe a colony of asexual bacteria, subjected to the same stresses as the digital organisms, would probably face similar consequences.

The concept of "survival of the flattest" seems to imply, the authors say, that, at least for populations subject to a high mutation rate, selection acts upon a group of mutants rather than the individual.

Thus, under such circumstances, genotypes that unselfishly produce mutant genotypes of high fitness are selected for, and supported in turn, by other mutants in that group.

The study therefore reveals that "selfish genes," while being the successful strategy at low mutation rates, may be outcompeted by unselfish ones when the mutation rate is high.

Related Links
Dr. Chris Adami
Computation and Neural Systems at Caltech
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

NASA Scientist Finds Clue To Possible Evolutionary Shift
Moffett Field - July 12, 2001
A team of researchers, including a NASA scientist, reports that an early-life nitrogen crisis may have triggered a critical evolutionary leap about 2 billion years ago.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.