Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















Reflections From a Warm Little Pond

Oxygen, although an absolute necessity for multicellular, advanced life, is poison to pre-biotic synthesis. Image based on artwork by David Seal for JPL
by David Pacchioli
University Park - May 10, 2001
Back in 1953, Jim Kasting said, scientists thought they had the origin of life figured out. Chemists Stanley Miller and Harold Urey at the University of Chicago had simulated that crucial instant around 3.9 billion years ago when a batch of simple inorganic molecules, zapped by a bolt of lightning (or maybe just the sun's warmth during a break in the clouds), fell together to form the prototypes for the complex organic compounds that life is made from.

Now that was a moment. Remember it on Star Trek? The muddy puddle of ooze on the edge of Nowheresville? The awful humidity? The onset of bubbling? Before, everything was dead as Play-doh.

After came a chain of eye-popping events that just keeps unfolding, across the eons, into alligators and astronauts, puppies and banana figs, mosquitos and lichens and particles of ebola virus.

In their lab, Miller and Urey shot flashes of lightning, in the form of cascades of sparks, through a flask containing an "ocean" of liquid water and an "atmosphere" of strongly reduced (that is, hydrogen-rich) gases - methane, ammonia, hydrogen sulfide, and water vapor.

After a couple of days, they tested what was left. "They had formed all sorts of compounds," Kasting said, "including large quantities of amino acids," the molecules that join to form proteins.

This simple experiment seemed to corroborate a vision Darwin (and not Gene Roddenberry) had described a hundred years earlier, of life emerging "in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, etc., present."

But the Miller-Urey experiment, important as it was, had a flaw. Urey had based his primitive-Earth atmosphere on astronomical data just then coming in, the first spectra from the giant planets in our Solar System: Jupiter, Saturn, Uranus, and Neptune.

These characteristic bands of color showed that the giants were swathed in atmospheres rich in methane and ammonia, thought to be left over from the planets' formation.

At the time, people thought all of the planets had once shared a "primordial" atmosphere, the result of their common birth. Because of their stronger gravity, the giants were believed to have retained this early atmosphere, while the atmospheres of Earth and the other, smaller planets had lost some of their lighter gases, hydrogen among them, to space.

Thus, Urey reasoned, an early Earth atmosphere, before its hydrogen had escaped and the life-driven process of photosynthesis had boosted its oxygen, would have been a lot like a present-day giant's.

Shortly after the Miller-Urey experiment was published, however, geologists came up with new findings on Earth's volcanic emissions - and threw the old reasoning for a loop.

"What comes out of volcanoes is not methane and ammonia," Kasting said, "but about 80 percent water vapor, 15 to 20 percent carbon dioxide, and traces of carbon monoxide and molecular hydrogen."

James C. G. Walker, one of Kasting's graduate advisers at the University of Michigan during the 1970s, took these emissions data and balanced them against the rate at which hydrogen would be expected to escape from a planet with Earth's gravity. ("He did all this stuff on the back of an envelope," Kasting said.) What Walker came up with was a much different picture of Earth's early atmosphere: an oxygen-rich mix of carbon dioxide, nitrogen, and water vapor.

The catch is that oxygen, although an absolute necessity for multicellular, advanced life, is poison to pre-biotic synthesis. Do a Miller-Urey experiment in an oxygen-rich atmosphere, Kasting said, and "you don't form things like amino acids. There are too many oxygen atoms in there." So, over the years, "enthusiasm for the warm little pond theory has waned."

Two competing theories have emerged instead. The discovery of microbes and other small organisms living in and around hydrothermal vents - underwater hot springs boiling from the ocean floor - has led to the idea that life may have started at the bottom of the sea.

Sharp differences in temperature and oxygen concentration at the boundaries around these vents make good catalysts for chemical reactions, Kasting said.

"The problem with this theory is that the complex organic compounds likely to form life cannot remain stable for long at such high temperatures." Amino acids, instead of joining up, would tend to break down.

The other scenario has life first coalescing in the frigid climes of outer space - specifically, within the cold dark hearts of interstellar dust clouds. "Long, complex organic molecules can be made when ionizing radiation leads to ion-molecule reactions," Kasting explained.

"The intense cold prevents them from breaking down." In this so-called "seeding from space" model, these complex molecules are brought to Earth by incoming meteorites and comets. The weak link here is that most of a meteor is vaporized on impact with our atmosphere. "The survival potential for organisms is low. They get pyrolized: Burned to a crisp."

Kasting, for his part, is not ready to give up on the warm little pond. Using computer models of light-triggered atmospheric processes, he is working to reconcile Darwin's vision with the constraints imposed by a relatively oxygen-rich atmosphere.

"My idea," Kasting said, "is that this atmosphere did contain some methane: just enough to allow for the formation of hydrogen-cyanide molecules, one of the key starting materials for making both amino and nucleic acids. Ten to 100 parts per million would be enough."

Present-day life, he explained, requires three types of molecules: DNA, to store the genetic information that allows cells to replicate; RNA, which transfers that genetic information from the nucleus to the rest of the cell; and the proteins that catalyze these reactions. "It's a very complicated system."

Yet in 1989, molecular biologists Thomas Cech of the University of Colorado and Sidney Altman of Yale shared a Nobel prize for showing that under some circumstances RNA can replicate on its own. Not only that, but it can store genetic information.

RNA, in other words, can do it all. "Early life is now believed to have passed through a stage in which only RNA was present," Kasting said: the so-called "RNA world."

All you need for life, besides those crucial amino acids, are the ingredients for RNA: ribose, a sugar; phosphate, a salt; and the four bases - adenine, cytosine, guanine, and uracil (the last replaces the thymine in DNA).

The question is, can you get these molecules in an atmosphere where significant oxygen is present? The answer, Kasting said, is yes - assuming there's a little bit of methane around.

Ribose, Kasting explained, "is simply five molecules of formaldehyde strung together," and formaldehyde is easy to make where there is carbon dioxide and light. Phosphate occurs routinely with the weathering of rocks. And all four bases, A, C, G, and U, can be synthesized from hydrogen cyanide, for which you need that sprinkling of methane.

"So the key to making Darwin's little pond," Kasting said, "is to figure out if there was a good source for methane in the early atmosphere." That source, he suggests, is under the sea, in the volcanic activity that fires up those super-hot hydrothermal vents.

Currently, the carbon released from the vents run about 99 percent carbon dioxide, he said, and about one percent methane, a slightly different mix than what comes from volcanoes on land.

"And there are good geochemical reasons to believe that the Earth's mantle 3.9 billion years ago was much more strongly reduced than it is today, which means the methane component of these emissions would have been that much higher." Plenty high enough to allow for the formation of organic molecules.

That's not to say this is the way life sparked into being, Kasting quickly added. But it's a plausible scenario. And if it did happen that way here, what's to stop the same process from repeating itself, around the universe, wherever conditions happen to be the same?

This article was originally published as part of NASA's Astrobiology News

Related Links
Penn State Astrobiology Research Center
NASA Astrobiology Institute
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Hitchhiking Molecules On Comets Can Survive Impacts With Earth
Berkeley - April 9, 2001
Simulating a high-velocity comet collision with Earth, a team of scientists has shown that organic molecules hitchhiking aboard a comet could have survived such an impact and seeded life on this planet.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.