. 24/7 Space News .
NASA Scientists Use Yeast To Understand Microgravity

on track to brew the first cold one?
Moffett Field - Jan 27, 2004
NASA scientists will study brewers yeast --typically used to make bread and beer -- to better understand how microgravity affects genes, and gain insight into the genetic basis of how humans respond to microgravity.

Deeper understanding of the molecular mechanisms of yeast's genetic response to microgravity will help NASA scientists identify which genes enable cell survival. Molecular biologists have added 'signature tags' to every gene in the yeast genome, so that the effects of microgravity on each gene can be studied. The benefit of using yeast cells is that it serves as a benchmark microbe for biological research studying human or other mammalian cells that have a very large and complex set of genes.

"Understanding gene expression patterns and how they are altered when cells are grown in the low-gravity, or microgravity, environment inside the International Space Station will help scientists learn how humans respond to gravity," said principal investigator Dr. Cheryl Nickerson from the Tulane University Health Sciences Center, who is working with co-investigator Dr. Tim Hammond of Tulane University and the Veterans Affairs Medical Center in New Orleans.

Two Yeast Group Activation Packs (GAP) that hold the yeast cultures, liquid growth medium and fixative used to preserve cells in space will be flown onboard the Russian Progress launch vehicle 13P scheduled to launch on Jan. 29 from the Baikonur Cosmodrome in Kazakhstan. After a two-day flight, the payload will be transferred to the International Space Station, where the experiment will remain for several months.

"This experiment will be among the first set of U.S. biological experiments that will be sent into space since the Columbia accident," said Dr. Beverly Girten, chief of the Science Payloads Operations Branch and small payloads project manager at NASA Ames Research Center, Moffett Field, Calif.

To activate the experiment, an International Space Station crewmember will insert a hand crank into the top of the GAP. Turning the crank will cause the yeast cells to mix with the liquid growth solution and begin growing. Following the growth period, the hand crank will be inserted into the top of the GAP again and turned, which will allow fixative to mix with the growing yeast colony, thus preserving the cells.

The preserved cells will be contained within the GAP for up to one year following experiment activation. They will be returned to Earth where scientists will compare them to identical yeast cells grown inside a ground control unit. By comparing the yeast genes expressed during ground-based growth with those expressed when the organism is grown in space, scientists can determine how microgravity alters the genetic expression profile and survival of cells.

"This experiment is a collaborative effort between peer-reviewed investigators funded through NASA's Office of Biological and Physical Research's (OBPR) Fundamental Space Biology Division, commercial groups working through OBPR's Space Product Development, and several NASA centers," said Girten. "This shared effort is particularly important since the shuttle fleet is not flying and there are limited opportunities to conduct science in space right now."

Life Science at Ames
Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Teledyne Wins NASA Space Station Cargo Mission Contract
Los Angeles - Jan 21, 2004
Teledyne Technologies has won a subcontract from Lockheed Martin Space Operations of Houston in support of the International Space Station (ISS) Cargo Mission Contract. The initial term of the contract is four years and nine months with two one-year options available as add-ons to the original term.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.