. 24/7 Space News .
Tropical Glaciers Formed While Earth Was Giant Snowball

Ice can accumulate in the tropics only if temperatures are below freezing or around freezing with large amounts of snowfall. Tropical glaciers exist today only on high mountain peaks such as the Andes and Mt. Kilimanjaro, and do not reach anywhere near sea level.
Boston - May 29, 2001
Glacial deposits that formed on tropical land areas during snowball Earth episodes around 600 million years ago, lead to questions about how the glaciers that left the deposits were created. Now, Penn State geoscientists believe that these glaciers could only have formed after the Earth's oceans were entirely covered by thick sea ice.

"There is strong geologic evidence of tropical glaciation at sea level during those times," Dr. David Pollard, research associate, Penn State College of Earth and Mineral Sciences' Environmental Institute, told attendees at the spring meeting of the American Geophysical Union today (May 29) in Boston. "We wanted to determine how low-level tropical glaciers could have formed."

Ice can accumulate in the tropics only if temperatures are below freezing or around freezing with large amounts of snowfall. Tropical glaciers exist today only on high mountain peaks such as the Andes and Mt. Kilimanjaro, and do not reach anywhere near sea level.

Pollard and James K. Kasting, professor of geosciences, first looked at the possibility that tropical ice sheets formed before the oceans completely froze into a snowball Earth, when equatorial oceans were still ice-free and could supply enough moisture for substantial snowfall.

During the lead-up to a snowball Earth episode, the Earth gradually cools because the amount of carbon dioxide in the Earth's atmosphere decreases. Relatively fast weathering of silicate rocks on large tropical landmasses causes this decrease that locks up carbon.

As the earth cools, the oceans begin freezing. The high reflectivity of the snow and ice that covers the northern and southern oceans, reflects, rather than absorbs, the sun's heat and further cools the planet.

This cooling takes place slowly until the oceans are frozen to about 30 degrees latitude, or from the North Pole down to New Orleans, La. and from the South Pole up to the tip of South Africa.

"This is the coldest that the Earth can get before all the entire ocean surface freezes," says Pollard. "Beyond this, there is no stable point at say 20 or 10-degrees latitude: instead, the ice-reflectivity feedback becomes unstable and the system collapses rapidly to a snowball Earth with all oceans ice covered."

The researchers adjusted a global climate model, GENESIS, to the coldest point just before the collapse and used climate outputs of temperature and precipitation to drive a dynamic ice-sheet model.

They used paleomagnetic reconstructions of land mass distributions for 750 and 540 million years ago, but, because the locations of major mountain chains are unknown that long ago, they put mountains analogous to the Andes, all around the edges of tropical land masses in their ice-sheet model.

"Ice sheets did form on the tops of these mountains," says Pollard. "However, the ice sheets never flowed down to sea level, where we find glacial deposits. Tropical temperatures were still too warm and melted the ice before it could flow down from the mountains."

The researchers conclude that it is unlikely that tropical sea level glacial deposits formed before the collapse into snowball Earth. However, having them form after the oceans freeze also seemed problematic because once the oceans are frozen, the rates of precipitation decrease drastically, to only a few millimeters per year.

"However, in further simulations with the global climate model for full snowball conditions, snowfall did exceed evaporation of snow and ice in some land areas, allowing a slow build up of tropical ice sheets that would eventually flow to the sea," says Pollard.

"It would have taken several thousand years to form big ice sheets this way, but since it takes several million years to reverse snowball Earth, there would have been plenty of time for the ice to form."

Also, snowfall rates would have been gradually increasing during that time as carbon dioxide built up. Researchers have estimated that it required a buildup of carbon dioxide by volcanic outgassing to 300 times today's levels to bring Earth out of snowball Earth, which accounts for the millions of years necessary to reverse the process.

Some scientists question whether life could have survived a full snowball- Earth episode, and therefore suggest that the Earth never passed beyond the critical point with sea ice down to about 30 degrees latitude.

However, the Penn State results imply that full snowball Earth must have occurred in order to produce the observed tropical glacial deposits at sea level.

Others have suggested that oceanic life could have survived full snowball episodes below gaps in the ice around volcanic island, or in tropical oceans where sunlight may have limited sea ice thickness to only a few meters.

Related Links
Earth System Science Center at PSU
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Climate Wobble Linked To Rare Anomaly In Earth's Orbit
Santa Cruz - April 12, 2001
About 23 million years ago, a huge ice sheet spread over Antarctica, temporarily reversing a general trend of global warming and decreasing ice volume. Now a team of researchers has discovered that this climatic blip at the boundary between the Oligocene and Miocene epochs corresponded with a rare combination of events in the pattern of Earth's orbit around the Sun.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.