. 24/7 Space News .
Carbon Sinks Slowed Greenhouse Gas Buildup In 1990s

In the 1980s the amount of carbon released to the atmosphere from deforestation about equaled that taken up by land ecosystems into various "sinks." During the 1990s the balance tipped, and 1.4 billion tons more carbon ended up in the land-based biosphere than in the atmosphere, despite continuing deforestation.

Boulder - Nov 26, 2001
The earth's land-based ecosystems absorbed all of the carbon released by deforestation plus another 1.4 billion tons emitted by fossil fuel burning during the 1990s, but we can't rely on this convenient uptake to head off global warming in the future, according to a new study published this week in the journal Nature. Carbon dioxide (CO2) is the primary greenhouse gas entering the atmosphere from human activities.

"We could easily see this robust transfer of carbon out of the atmosphere and into land-based ecosystems that occurred in the 1990s slow down in the future," says the paper's lead author, David Schimel, of the National Center for Atmospheric Research (NCAR).

Fossil-fuel burning, cement manufacture, and deforestation gave off about 7 billion tons of carbon per year during the 1980s and 8 billion tons annually during the 1990s, about half of it ending up in the earth's atmosphere, according to the study.

In the 1980s the amount of carbon released to the atmosphere from deforestation about equaled that taken up by land ecosystems into various "sinks." During the 1990s the balance tipped, and 1.4 billion tons more carbon ended up in the land-based biosphere than in the atmosphere, despite continuing deforestation.

Land-use changes in the Northern Hemisphere have been partly responsible for carbon uptake during the 1990s. In the United States, trees and other growth expanded on abandoned agricultural land, while a reduction in fires allowed forests to spread. Enhanced plant growth spurred by increasing carbon dioxide and nitrogen deposits -- a process more noticeable in Europe and Asia -- also helped clear the air of CO2 buildup.

"Forests can only replace farms for so long," explains Schimel. "Eventually new trees and grasses reach maturity and soak up less carbon dioxide. Similarly, there's a limit to how much forests can fill in and spread, even with successful fire suppression."

The boost in CO2 and nitrogen fertilization will peak as well, though at high levels. Over time the effects of climate change on ecosystems will probably reduce sinks globally, write the authors. Meanwhile, carbon dioxide emissions are expected to continue to rise because of human activities.

An unusually large uptake of atmospheric carbon in the early 1990s was due to the climate's natural variability, researchers suspect. Globally there appears to be a net release of carbon into the atmosphere during warm, dry years and a net uptake during cooler years. Recently, evidence has grown linking changing levels of atmospheric CO2 to the El Nino/Southern Oscillation and its widespread impacts.

For the tropics, scientists expected computer models to show a large increase in atmospheric carbon dioxide released by deforestation during recent decades. In fact, no such increase emerged, indicating a potentially large sink in the low latitudes.

Local-scale studies show carbon absorption by a range of mature tropical forest types, but the authors warn that such processes may not be true of the entire region, since tropical ecosystems vary widely. The lack of data, both atmospheric and ecological, combined with a complex meteorology, make estimates of tropical fluxes highly uncertain, they caution.

Previous attempts to evaluate carbon uptake in North America compared to that occurring in Europe and Asia have been controversial. In this paper, the authors conclude that the 1990s sink was roughly split between Eurasia and North America, with Eurasia slightly leading. Because they used only atmospheric data in their analyses, the authors caution that the resulting distribution pattern is highly uncertain.

Even so, it appears consistent with independent analyses of satellite vegetation data. The uptake patterns across the continents also make sense physically: they appear to be driven by broad climate patterns interacting with historic human management of ecosystems.

Carbon accumulates at higher rates in intensively managed ecosystems and those recovering from disturbance, the researchers note. For example, Chinese inventory studies of continental plant growth show a major carbon sink resulting from extensive programs in foresting and reforesting.

Related Links
National Center for Atmospheric Research
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Earth is Becoming a Greener Greenhouse
Washington - Sept. 4, 2001
Over the past 21 years, parts of the northern hemisphere have become much greener than they used to be. Researchers using satellite data have confirmed that plant life above 40 degrees north latitude (New York, Madrid, Ankara, Beijing) has been growing more vigorously since 1981.

Refining Estimates For The North American Carbon Sink
Princeton - June 25, 2001
An international consortium of scientists has issued a revised estimate of the U.S. role in the worldwide accumulation of carbon dioxide in the atmosphere, a major cause of global warming. The study, published in the June 22 issue of Science, reconciles what had appeared to be sharply conflicting measurements about the size of the U.S. "carbon sink" -- an effect that drains carbon from the air and stores it in the land.

Ohio and Maine Geologists Use Lichens To Track Recent Climate Changes in New Zealand
by Chris Curran
Cincinnati - Nov 12, 2001
There is little question that many of the Earth's great glaciers have been retreating since the Little Ice Age reached its most recent advanced position in the mid 1800s. The bigger questions remain. How fast has that change occurred, and were the dramatic changes reported in Europe similar in other parts of the world?



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.