Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Gravitational Lens Reveals Heart Of A Distant Galaxy

illustration only
Boston - Feb 11, 2004
Many examples are known where a galaxy acts as a gravitational lens, producing multiple images on the sky of a more distant object like a bright quasar hidden behind it. But there has been a persistent mystery for over 20 years: Einstein's general theory of relativity predicts there should be an odd number of images, yet almost all observed lenses have only 2 or 4 known images.

EMBARGOED until 1:00 p.m. EST, Wednesday, February 11, 2004

Now, astronomer Joshua Winn of the Harvard-Smithsonian Center for Astrophysics (CfA) and two former CfA colleagues, David Rusin (now at the University of Pennsylvania) and Christopher Kochanek (The Ohio State University), have identified a third, central image of a lensed quasar.

Radio observations of the system known as PMN J1632-0033 in the constellation Ophiuchus uncovered a faint central image, which can be used to investigate the properties of the lensing galaxy and the supermassive black hole expected to lie at its center.

"Finding this central image is interesting in its own right, but is even more important for what it can tell us about the lensing galaxy. This offers us a new tool for studying galaxies so far away that, even to the Hubble Space Telescope, they're just faint smudges," said Winn.

Quasars are extremely distant and bright objects believed to be powered by supermassive black holes. They shine brightly by converting the gravitational energy of matter falling into the black hole into light and other types of radiation, such as radio waves.

In gravitational lensing, light rays from a quasar which pass close to a galaxy are bent by the galaxy's gravitational field, much as they would be bent when passing through a glass lens. The denser the center of a galaxy, and the stronger its gravity, the fainter the central image will be.

Yet this central image, whose light has passed closest to the middle of the lensing galaxy, can tell us much about that galaxy's core. That opportunity makes finding such central images particularly desirable.

In the system PMN J1632-0033, a radio-loud quasar at redshift z=3.42 (a distance of about 11.5 billion light-years) is being lensed by an elliptical galaxy at redshift z~1 (about 8 billion light-years away). Two images of the quasar were known to exist, and a third, very faint radio source was suspected to be the central image. However, that third source was right on top of the lensing galaxy, and so might have been intrinsic to the lensing galaxy itself.

By observing the radio "color," or spectrum, of all three images using the National Science Foundation's Very Large Array and Very Long Baseline Array, Winn and his colleagues provided compelling evidence that the third source is indeed the quasar's central image. Its spectrum is essentially identical to the other two images, except at low frequencies where some of the radio energy was absorbed by the lensing galaxy.

The geometry and properties of the quasar's three images already are telling us about the core of the lensing galaxy. For example, its central black hole weighs less than 200 million solar masses.

Also, its surface density (amount of matter as projected against the plane of the sky) at the location of the central image is more than 20,000 solar masses per square parsec. (For comparison, the surface density of the Milky Way near our sun is about 50 solar masses per square parsec.) Both figures for the lensing galaxy agree with expectations based on detailed observations of galaxies hundreds of times closer to the Earth.

"Almost all of our knowledge about galaxy centers comes from studying very nearby galaxies. The remarkable thing about central images is that you can get similar information about the cores of galaxies hundreds of times farther away, and billions of years younger than our neighboring galaxies," said Winn.

Related Links
Harvard-Smithsonian Center for Astrophysics
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Biggest Zoom Lens In Space Extends Hubble's Reach
Greenbelt - Jan 08, 2003
The Advanced Camera for Surveys (ACS), aboard NASA's Hubble Space Telescope, has used a natural "zoom lens" in space to boost its view of the distant universe. Besides offering an unprecedented and dramatic new view of the cosmos, the results promise to shed light on galaxy evolution and dark matter in space.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.