. 24/7 Space News .
Pushing The Envelope at Glenn
Tapping A New Realm Of Physics For Advanced Propulsion Cleveland - August 24, 1999 - NASA Glenn Research Center announces the selection of six proposals for experiments and theoretical work in Breakthrough Propulsion Physics -- research that may ultimately lead to methods of practical interstellar travel.

The distances between stars is so great that with existing propulsion technology a probe would travel tens of thousands of years before reaching our nearest neighboring star.

Even with the most ambitious new propulsion technology based on known physics, it would still be extremely difficult for a probe to reach that far within 50 years.

To overcome these limitations to practical interstellar space travel, new propulsion physics is being sought by the Breakthrough Propulsion Physics program. These six research selections are an early step in this process.

"Intriguing developments have appeared in recent scientific literature that can serve as starting points for this kind of research," said Marc Millis, the project manager for the program at Glenn. "The Breakthrough Propulsion Physics program is the beginning of NASA�s effort to systematically assess these findings and theories. "At this stage of research, success is defined as learning more about these developments rather than achieving breakthroughs," Millis added.

The proposals were selected after a two-stage peer review process. In the first stage, 50 specialists from academia, government and industry scored the 60 proposals received. In the second stage, government reviewers selected a variety of approaches from the top ranking proposals.

The proposers will negotiate for grants, contracts or cooperative agreements worth a total program value of $430,000. The principal investigators and a brief description of the work they proposed follow:

  1. John Cramer (University of Washington, Seattle, WA) proposed a test to see if changing energy flow can affect inertia as suggested in 1991 by James Woodward, in the journal Foundations of Physics Letters. If there is such an effect, it may be exploited to develop a new method of space propulsion. In any case, the research will add to the understanding of how inertia is tied to the surrounding matter of the universe.

  2. Jordan Maclay (Quantum Fields LLC, Richland Center, WI) and MEMS Optical Inc. (Huntsville, AL) proposed an experimental and theoretical study of quantum vacuum energy. The experiments will use micro-electromechanical devices to test force and energy effects predicted by quantum electrodynamics.

  3. Harry Ringermacher (General Electric Corporate Research and Development, Schenectady, NY) with the collaboration of researchers from Washington University, St. Louis, MO, and United Technologies Research Center, East Hartford, CT, proposed a magnetic resonance experiment to test a theory linking electromagnetism, mass, and time. Ringermacher originally published the theory in 1994, in the journal Classical and Quantum Gravity.

  4. Glen Robertson and Ron Litchford (NASA Marshall Space Flight Center, Huntsville, AL) proposed an experimental study of possible links between superconductors and gravity as recently discussed in several scientific journals. They plan to use a torsion balance, similar to those used to search for material-dependant gravitational effects, to search for superconductor-gravity effects.

  5. Kevin Malloy (University of New Mexico, Albuquerque, NM) and Raymond Chiao (University of California at Berkeley, Berkeley, CA) proposed experiments and theoretical work on "superluminal quantum tunneling," an effect where light appears to pass through barriers faster than it travels through normal space. The proposed research will critically examine some of the faster-than-light hypotheses associated with this effect.

  6. Serguei Krasnikov (Altamonte Springs, FL) proposed to theoretically assess the necessity of "negative energy" suggested in recent scientific literature on hyperfast travel. The possibilities for enabling hyperfast travel is more feasible if negative energy is not required.

The Glenn Breakthrough Propulsion Physics program is part of a continuing effort to provide the scientific advancements necessary for future propulsion technology. It is funded by the Advanced Space Transportation Program, managed by NASA Marshall Space Flight Center, Huntsville, AL, and the Advanced Concepts Program of the NASA Office of Space Science, Washington, DC.

  • Summaries of Proposals
  • Breakthrough Propulsion Physics Program

    SpaceDaily Related News Baskets

  • Tech Space
  • RLV Alert
  • Launcher




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.