. 24/7 Space News .
The Missing Link In Planet Formation

NASA Hubble Space Telescope's new Advanced Camera for Surveys (ACS) has given astronomers their clearest view yet of the dust disk around a young, 5-million-year-old star. Such disks are expected to be the birthplace of planets. The star, called HD 141569A, lies 320 light-years away in the constellation Libra and appears to be a member of a triple-star system. The image at left shows the star and disk as it appears in space. The system is slightly tilted when viewed from Earth. The photo at right portrays the system if astronomers could view it from above. Credit: NASA, M. Clampin (STScI), H. Ford (JHU), G. Illingworth (UCO/Lick), J. Krist (STScI), D. Ardila (JHU), D. Golimowski (JHU), the ACS Science Team and ESA
Pasadena - Oct 21, 2003
Just as anthropologists sought "the missing link" between apes and humans, astronomers are embarking on a quest for a missing link in planetary evolution. Only instead of dusty fields and worn shovels, their laboratory is the universe, and their tool of choice is NASA's new Space Infrared Telescope Facility.

Launched on Aug.25, NASA's fourth and final Great Observatory will soon set its high-tech infrared eyes on, among other celestial objects, the dusty discs surrounding stars where planets are born.

While other ground- and space-based telescopes have spied these swirling "circumstellar" discs, both young and old, they have missed middle-aged discs for various reasons. The Space Infrared Telescope Facility's unprecedented sensitivity and resolution will allow it to fill in this gap and in the process answer fundamental questions regarding how planets, including those resembling Earth, may form.

"With the Space Infrared Telescope Facility, we anticipate seeing many planetary discs at all stages of development," says Dr. Karl Stapelfeldt of JPL, a scientist with the mission. "By studying how they change over time, we may be able to determine what conditions favor planet formation."

SIRTF Update: October 21, 2003 - This is Day 58 of the 90-day in-orbit checkout and science verification period. Tests of the pointing calibration and reference sensor (PCRS) have been completed successfully. The PCRS is a cryogenic optical imager that serves as the observatory's fine guidance sensor by providing an alignment reference between the telescope boresight and the spacecraft attitude detrmination system. Those tests indicate that SIRTF will meet, and perhaps exceed, its pointing requirements. The next update will be provided on Friday, October 24.
Circumstellar discs are a natural step in the evolution of stars. Stars begin life as dense cocoons of gas and dust, then as pressure and gravity kick in, they begin to coalesce, and a flat ring of gas and dust takes shape around them. As stars continue to age, they suck material from this disc into their core. Eventually, a state of equilibrium is reached, leaving a more mature star encircled by a stable disc of debris.

It is around this time, about 10 million years into the lifetime of the star, that astronomers believe planets arise. Dust particles in the discs are thought to collide to form larger bodies, which ultimately sweep out gaps in the discs, much like those lying between the rings of Saturn.

"You can think of planets as wrecking balls that either clear away debris or gather it up as if it were mud," says Dr. George Rieke, principal investigator on one of the three science instruments onboard the observatory.

Infrared telescopes can sense the glow of the cosmic dust that makes up these discs; however, they cannot detect planets directly. Planets have less surface area than their equivalent in dust grains and thus give off less infrared light. This is the same reason coffee is ground up before brewing: the larger combined surface area of the coffee grains results in a more robust pot of coffee.

Past observations of circumstellar discs generally fall into two categories: young, opaque discs (called protoplanetary discs) with more than enough mass to match our own solar system's planetary bodies; or older, transparent discs (called debris discs) with masses equal to a few moons, and doughnut-like holes at their center. Middle-aged discs linking these two developmental stages have gone undetected.

One of the questions astronomers hope to address with the Space Infrared Telescope Facility is: What happened to all the mass observed in the younger discs? Somewhere in their evolution, mass is either eaten up by the star, ejected by the star or transformed into planets that lie in the doughnut holes of the discs. By analyzing the composition and structure of the "missing link" discs, astronomers hope to solve this riddle, and better understand how planetary systems like our own evolved.

Related Links
Space Infrared Telescope Facility
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

First Extrasolar Planets, Then Extrasolar Moons
Paris (ESA) Oct 09, 2003
ESA is now planning a mission that can detect moons around planets outside our Solar System, those orbiting other stars.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.