. 24/7 Space News .
Shock Waves Through Solar Nebula May Explain Water-Rich Space Rocks

A high-resolution electron image of a chondrule surrounded by a rim of fine-grained dust that has reacted with water. This image, courtesy of Dante Lauretta, appears in the Science article.
by Lori Stiles
Tucson - Jan 24, 2003
Shock waves through icy parts of the solar nebula could well be the mechanism that enriched meteorites with water -- water that some believe provided an otherwise dry Earth with oceans, according to a new study published in the current issue of Science (Jan. 24).

Scientists have long debated how "chondrules" might have formed. Chondrules are millimeter-sized blobs of once-melted minerals found within chondritic meteorites, which are thought to be the oldest objects in the solar system.

In some of these meteorites, chondrules are rimmed by fine silicate dust particles that have reacted with water.

Researchers at first speculated that chondrules and their water-rich rims formed when water molecules in the solar nebula collided with dust. But a 1987 study dispelled that idea, because the time it would take for the minerals to form in this manner would be longer than the lifetime of the solar nebula.

Planetary scientists at the University of Arizona and University of Hawaii now report that chondrule-forming shock waves in icy regions of the nebula could have produced conditions that allowed rapid mineral hydration. Fred J.

Ciesla, Dante S. Lauretta and Lon L. Hood of the UA and Barbara Cohen of the UH collaborated in the study.

Lauretta and Cohen speculated years ago that a big energetic event, like a shock wave, might produce enough energy to vaporize ice particles and briefly create conditions that made such quick hydration reactions possible.

Ciesla modeled the scenario of what happened to particles of silicate and ice during a shock wave event.

"And what happens is, the ice particles vaporize in this very energetic event, producing high water vapor pressure. During this brief period of increased water pressure, the hydration reaction occurs much faster than previously predicted," Ciesla said. "During this brief period, the chondrules melt and the rims form in the same event."

Gas slows as it passes through a shock front, increasing in temperature and density. But solid particles entrained in the gas continue through the shock wave at high velocity.

"The solid particles heat up because they are speeding through the slower-moving gas. And just as a meteor is heated up and burns when it enters Earth's atmosphere, particles are heated when they collide with the gas molecules.

"Gas both heats and slows the chondrules, so they melt and begin to cool. The water vapor then reacts with the dust to form these hydrated silicates, and the chondrules accrete these silicates to form their rims."

"An interesting characteristic of these particular meteorites is that they contain a lot of water, and the deuterium-to-hydrogen ratios in that water matches the ratios we find in Earth's water," Ciesla noted.

Why Earth has water is a mystery, for "especially early on in the solar nebula, the area where the Earth formed was too hot for water to incorporate into a solid body," Ciesla said. Meteorites may have delivered at least part of Earth's water, although that remains open to debate, he added.

The scenario also suggests how so much organic material has survived in the carbonaceous chondrite meteorites. If water reacted with the fine dust in the solar nebula as the new research suggests, temperatures in the meteorites would have remained low enough for organic molecules to survive and be delivered, along with water, to Earth.

Although the idea that shock waves formed the hydrated rock and chondrules found in the most primitive meteorites stands up to quantitative analysis, scientists are still speculating about where the shock waves come from, and it's a topic Ciesla hopes to address in this doctoral thesis.

UA planetary scientist Lon Hood, one of the authors on the Science paper, originally theorized that as Jupiter was forming, it excited the orbits of the many "planetismals," or planet building-blocks, in the region that became the present day asteroid belt so that they were propelled through the gas in the solar nebula at speeds greater than the speed of sound, creating shock waves. Ciesla has begun testing that idea.

Other ideas on the origin of shock waves also involve Jupiter is some way, he said.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Planet-Hunting Machine Ready For Even Better Upgrade
Seattle - Jan 09, 2003
The world's best planet-hunting machine, the Keck High Resolution Echelle Spectrometer, will be getting even better this year with an advanced imaging array that will improve efforts to detect extra-solar planets, examine distant quasars, measure extragalactic stars and do other research requiring very precise wavelength measurements of thousands of color channels with one exposure.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.