Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Extrasolar Meteors Hint At Distant Planet Formation

A dusty old Universe hints at much beyond our own Sol
by Nicolle Wahl
Toronto - Jan 10, 2003
University of Toronto astronomers say that detecting microscopic meteors from other solar systems could provide clues about the formation of planets like Earth.

Dust streams from our sun's stellar neighbours consist of tiny grains of pulverized rock ejected from a disk of dust and debris that commonly surrounds young stars, says Joseph Weingartner, a post-doctoral fellow at U of T's Canadian Institute for Theoretical Astrophysics.

According to Professor Norman Murray, associate director of CITA and co-author of the study, "if we can detect these grains and trace them back to the star system that they came from, we'd have very good evidence of planet formation going on in that system."

Weingartner presented the study Jan. 6 at the American Astronomical Society meeting in Seattle, Wash.

The tiny grains are created by collisions of large objects such as boulders and asteroids during or slightly after the process of planet formation, he explains. The collisions create a disk of particulate grains (each grain is about 100 times smaller than a grain of sand).

Some of these grains are then ejected from a disk after "slingshotting" around a planet. Weingartner says the speeds of the grains entering our solar system can range from a few kilometers to 100 kilometres per second.

If the grains are travelling at high velocities, researchers know that they originate from outside our solar system.

Weingartner and Murray propose that future radar telescope facilities that can examine roughly one million square kilometers of space be used to detect dust streams coming from nearby stars.

By detecting the speed and direction of grains when they hit the Earth's atmosphere, scientists could potentially trace the path of the tiny grains back to star systems where planet formation may be occurring.

"In astronomy, if you want information, you always rely on radiation like visible light or infrared light," says Weingartner. "You can think of these radar facilities as a different type of telescope - a telescope for collecting dust rather than a telescope for collecting light."

Among the star systems whose dust streams could be studied is beta Pictoris, a 10-to-20 million-year-old star located roughly 63 light years from the sun.

Weingartner and Murray estimate that in the dust disk around beta Pictoris, the mass of the particles with a radius of one centimeter or smaller is about 19 times the mass of the Moon.

"We have a real opportunity to open a new window on these kinds of systems," says Weingartner. He and Murray say that their study is a first step in a new approach to astronomical research, and note that further studies will require the construction of large radar telescope facilities with expanded sky coverage.

Nicolle Wahl is a news services officer with the department of public affairs.

Related Links
Search SpaceDaily
Subscribe To SpaceDaily Express

Precursors To Early Earth Life Found In Canadian Meteorite
Houston - Dec 17, 2002
In a study published today in the "International Journal of Astrobiology," researchers state that a meteorite that fell to Earth over northwestern Canada in January 2000 contains a previously unseen type of primitive organic material that was formed long before our own solar system came into being.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.