. 24/7 Space News .
Building a Better Hydrogen Trap

Crystalline sheets produced in covalent organic frameworks (COFs) Credit: Adrien Cote.
Flint MI (SPX) Nov 21, 2005
Using building blocks that make up ordinary plastics, but putting them together in a whole new way, University of Michigan researchers have created a class of lightweight, rigid polymers they predict will be useful for storing hydrogen fuel.

The work is described in today's (Nov. 17) issue of the journal Science.

The trick to making the new materials, called covalent organic frameworks (COFs), was coaxing them to assume predictable crystal structures---something that never had been done with rigid plastics.

"Normally, rigid plastics are synthesized by rapid reactions that randomly cross-link polymers," said postdoctoral fellow Adrien Cote, who is first author on the Science paper. "Just as in anything you might do, if you do it really fast, it can get disorganized."

For that reason, the exact internal structures of such materials are poorly understood, making it difficult to predict their properties. But Cote and colleagues tweaked reaction conditions to slow down the process, allowing the materials to crystallize in an organized fashion instead of assembling helter skelter.

As a result, the researchers can use X-ray crystallography to determine the structure of each type of COF they create and, using that information, quickly assess its properties.

"Once we know the structure and properties, our methodology allows us to go back and modify the COF, making it perform better or tailoring it for different applications," said Cote.

Cote collaborated on the work with Omar Yaghi, who is the Robert W. Parry Collegiate Professor of Chemistry at U-M. Over the past 15 years, Yaghi has taken a similar approach to producing materials called metal-organic frameworks (MOFs).

On the molecular level, MOFs are scaffolds made up of metal hubs linked together with struts of organic compounds. By carefully choosing and modifying the chemical components used as hubs and struts, Yaghi and his team have been able to define the angles at which they connect and design materials with the properties they want.

Like MOFs, COFs can be made highly porous to increase their storage capacity. But unlike MOFs, COFs contain no metals. Instead, they're made up of light elements � hydrogen, boron, carbon, nitrogen and oxygen � that form strong links (covalent bonds) with one another.

"Using light elements allows you to generate lightweight materials," said Cote. "That's very important for hydrogen fuel storage, because the lighter the material, the more economical it is to transport around in a vehicle. The strong covalent bonds also make COFs very robust materials."

Although the main thrust of the current research is creating materials for gas storage in fuel cells, Cote, Yaghi and colleagues also are exploring variations of COFs that might be suitable for use in electronic devices or catalytic applications.

"This is the first step to what we think is going to be a very large and useful class of materials," Cote said.

Cote and Yaghi collaborated on the research with assistant professor of chemistry Adam Matzger and graduate students Annabelle Benin and Nathan Ockwig, all of U-M, and Michael O'Keeffe of Arizona State University. The work was funded by the National Science Foundation, the U.S. Department of Energy and the Natural Sciences and Engineering Research Council of Canada.

Related Links
Omar Yaghi
Science magazine
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Madagascar Energy Firm Announces Green Fuel Programme
Antananarivo (AFP) Nov 09, 2005
Farmers in Madagascar are going all out to produce an environmentally friendly fuel from a shrub they hope can be used to meet five percent of diesel needs within a couple of years, a local energy firm has announced.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.