Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




Experiment Confirms Existence Of New Electronic State In Superconductors

File photo of a high temp super conductive lattice.
University Park PA (SPX) Nov 12, 2004
The existence of a new electronic state in superconductors, materials that can carry an electric current without resistance, has been confirmed experimentally according to research to be published in the 12 November 2004 issue of the journal Science by a team led by Ying Liu, associate professor of physics at Penn State.

"We have established direct evidence for the existence of an odd-parity superconductor, which previously had been theorized but never demonstrated in an unambiguous experiment," says Liu.

The results culminate six years of experimentation by Liu in collaboration with a former graduate student, Karl Nelson, and a former postdoctoral associate, Zhiqiang Mao at Penn State; and Yoshiteru Maeno, a professor of physics at Kyoto University.

In addition to their scientific interest, superconductors have a number of practical applications. These include superconducting magnets, which have enabled the development of high-resolution magnetic-resonance imaging in medicine, and superconducting wires, which transport electrical power without loss due to heating of the cable by electrical resistance.

A material becomes superconducting because electrons in the material form pairs, known as Cooper pairs. Liu likens the pairing process to dancers on a dance floor:

"The electrons, crowded together, form pairs and move to the 'music' of phase coherence, a quantummechanical property that synchronizes the steps of all the dancing pairs." These pairs, described mathematically by a quantummechanical wave function, move tightly together despite tendencies that would force them apart.

Physicists theorize that there are two categories of electronic state in superconductors, based on the quantummechanical characteristics of the Cooper pairs. Although their properties vary widely, almost all superconductors found so far belong to the same category because they share a fundamental property, known as even-parity symmetry.

"Each Cooper pair in a superconductor can be thought of as being born with a little one-handed internal clock that indicates the 'time', or the phase, of the pair," explains Liu.

"When the hand points to midnight the phase of the Cooper pair is zero degrees. When the hand points to three, the phase is 90 degrees, at six it is 180 degrees.

Quantum mechanics demands that the phase of two pairs moving in opposite directions be different by exactly zero or 180 degrees." If the clocks of two Cooper pairs moving in opposite directions have the same time, the symmetry of the pairs is designated as even parity.

In elemental superconductors - first discovered almost 100 years ago - the two electrons in a pair tend to be close together without any relative motion.

In so-called high-temperature superconductors - materials discovered a couple of decades ago that still are poorly understood - the electrons in a pair tend to be farther apart, with substantial relative motion.

Although these Cooper pairs behave very differently and the superconductors exhibit rather different features, they share the same property of even-parity symmetry.

On the other hand, if the clocks for two pairs moving in the opposite directions are six hours apart--a phase difference of 180 degrees - the symmetry of the Cooper pairs is designated as odd-parity symmetry.

These odd-parity Cooper pairs form a new electronic state in superconductors. "The pairing symmetry is important because it dictates many physical properties of a superconductor. An odd-parity superconductor behaves very differently from an even-parity superconductor," says Liu.

The article to appear in Science, "Odd-Parity Superconductivity in Sr2RuO4," confirms unambiguously that strontium ruthenate, Sr2RuO4, which is the only known superconducting ruthenium oxide material, is a member of this category of odd-parity superconductors.

Although other experiments have indicated that odd-parity pairing was involved, Liu's experiment provides the first definitive proof of this new type of pairing.

"Theorists had predicted that superconductivity in strontium ruthenate could be associated with odd-parity pairing," says Liu.

"Earlier experiments did provide plenty of evidence to support the prediction, but those results also could be questioned by counter examples and attributed to something else. Our experiment is a 'yes-or-no' test of the odd-parity pairing that settles the issue."

The basic idea of the experiment is to measure the dependence of the phase of the Cooper-pair wave function on the direction in which the Cooper pair moves, using the phenomenon of wave interference.

"Essentially, we want to compare the clocks of the strontium ruthenate Cooper pairs moving in the opposite directions. We connected a strontium ruthenate superconductor to an even-parity, conventional superconductor through two parallel surfaces that are oppositely faced, forming two so-called Josephson junctions. This procedure makes a superconducting quantum-interference device, known as a SQUID," says Liu.

"The clocks of the strontium ruthenate pairs moving into the conventional superconductor through the two junctions are then six hours apart, or 180 degrees different in phase. The Cooper-pair waves from the two junctions will then interfere destructively," says Liu.

This interference pattern was detected by measuring a current going through the SQUID as a function of an applied magnetic field.

By confirming through the interference patterns that the oppositely moving Cooper pairs naturally position themselves in their respective time zones six hours apart - a 180 degree phase difference - Liu's team demonstrated that strontium ruthenate does exhibit an odd-parity symmetry.

The discovery is of interest to physicists because it breaks new scientific ground that also could have useful applications. "In nature, particles can be paired in specific ways depending on the interactions that create the attractive force," says Liu.

"Odd-parity pairing has been found to exist in unusual systems ranging from small and cold - such as atoms of helium-3 at very low temperatures, a couple of thousandths of a degree above absolute zero, to large and hot - such as neutrons in neutron stars at hundreds of millions of degrees."

The phenomenon of odd-parity superconductivity in strontium ruthenates occurs only below a temperature of about one and a half degrees above absolute zero, well below room temperature.

However, Liu points out that now that the odd-parity superconductor has been shown to exist, the unique features of this type of superconductor can be studied for potential practical applications.

In addition to possible expansion of current superconductor uses, odd-parity superconductors someday may be used for special purposes; for instance, in the research effort to develop quantum computers.

This research was funded by the United States National Science Foundation; the Japan Society for the Promotion of Science; and the Japanese Ministry of Education, Culture, Sports, Science, and Technology; and the Japanese 21st-Century Centers of Excellence.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Sandia Imagists Overcome Maelstrom Obscuring Z Machine's Drive Force
Albuquerque NM (SPX) Nov 11, 2004
Peering into the center of Sandia National Laboratory's Z machine as it fires had been a feat unachievable for a decade. Other than a nuclear bomb, Z is the most powerful generator of X-rays on the planet. Last year, its central mechanism, called a Z-pinch, fused isotopes of hydrogen to create nuclear fusion.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.