. 24/7 Space News .
'Gold Bug' Sheds Light on How Some Gold Deposits Formed

A family touches the world's largest gold ingot displayed at a museum at the Toi Gold Mine, in the town of Toi, Shizuoka prefecture, 30 July 2000. The 200-kilogram gold ingot, measuring 40.5cm x 19.5cm x 16cm, was recognized 28 July as the world's largest gold ingot by the Guinness World Record. AFP PHOTO
Amherst - Sept. 10, 2001
For centuries, scientists have wondered why gold is found in two forms -- as a solid in deposits close to the Earth's crust, and in solution, often far removed from gold-ore deposits.

A fairly simple lab experiment conducted at the University of Massachusetts may lead to an understanding of how the precious metal came to be available in disparate forms, and how some gold-ore deposits might have been formed.

In research related to pollution clean-up, a team of UMass microbiologists led by noted researcher Derek Lovley has extracted gold solids from water containing dissolved gold.

The work uses technology Lovley developed 10 years ago to clean up heavily polluted water and soil around the U.S. using bacteria and archaea, or ancient micro-organisms, to break down heavy metals in affected environments.

Like uranium, cadmium, and other heavy metals, gold is precious and useful to humans. Lovley notes that dissolved gold, however, is useless because it can't be manipulated and formed into objects of value or beauty.

Lovley says when either solid or liquid gold is ingested, it is toxic to most life forms. On the other hand, liquid gold and many other heavy metals are not toxic to a group of microbes called extremophiles, or simple life forms known to thrive in environments where others cannot live.

With this in mind, the UMass researchers asked if extremophiles might have ingested the liquid gold found in hydrothermal vents, hot springs, and other hot places, and left it scattered as deposits of solid gold in places that now are below the surface of the Earth.

This would explain how the metal came to be in two different forms in very different environments. If that is the case, the team wondered if microbes could duplicate the process in the laboratory and extract valuable solids from liquid containing dissolved gold.

"A vast number of bacteria and archaea have the ability to transfer electrons to iron through a reduction process," explained Lovley. "In other words, they digest one form of a metal and excrete it as another form. This transfer leaves behind deposits of solid metal in unlikely places on Earth or maybe even on Mars. What's left behind is often more useful, or more accessible to humans, than the original form of the same substance."

Lovley's lab has previously published evidence that iron-reducing micro-organisms are involved in the formation of uranium ores, changing uranium to a form that precipitates out of water.

Massive accumulations of magnetite created by iron-reducing microbes during the Precambrian period of the earth's development now are important deposits of iron ore, according to Lovley.

In the laboratory, postdoctoral research associate Kazem Kashefi, and graduate students Jason M. Tor, and Kelly P. Nevin studied dissolved gold in an oxidized form in an environment similar to that found in a hydrothermal vent, where dissolved gold can sometimes be found.

The team wanted to see what would happen if they put iron-reducing microbes into the gold solution under those conditions. As they suspected, the microbes rapidly converted the gold from the useless, oxidized, dissolved form to a more valuable, insoluble, metal form. Essentially, the microbes had eaten the solution, and left behind a precious by-product.

"There's a significant amount of gold found in solution in some thermal springs, and hydrothermal vents on the ocean floor," Lovley said. "The problem is that the gold is extremely diluted, so only a teeny amount is dispersed in a very large volume of water."

"There are waste streams from gold processing where this same reduction process might work on a larger scale, but the goal of this study was to offer an explanation of how gold deposits are formed, more than it was to produce any profitable or useful application on a larger scale," explained Lovley.

Related Links
University of Massachusetts-Amherst
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Electron Microprobe Can Determine the Ages of Rocks
Amherst - August 8, 2001
The new method offers greater efficiency, and access to a much more detailed geologic record than current dating methods, the scientists say. The successes of the early phases of the research have led to funding for development of a new electron microprobe that will significantly enhance the potential of the technique.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.