. 24/7 Space News .
NASA Researchers Put New Spin on Einstein's Relativity Theory

illustration only
Pasadena - Apr 07, 2003
Albert Einstein might be astonished to learn that NASA physicists have applied his relativity theory to a concept he introduced but later disliked namely that two particles that interact could maintain a connection even if separated by a vast distance. Researchers often refer to this connection as "entanglement."

Researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., have discovered that this entanglement is relative, depending on how fast an observer moves with respect to the particles, and that entanglement can be created or destroyed just by relative motion. This might change the way entanglement is used on future spacecraft that move with respect to Earth or with each other.

"Imagine a particle on Earth entangled with a particle light years away," said Dr. Christoph Adami, principal scientist in the Quantum Computing Technologies Group at JPL. "Whatever happens to particle A on Earth happens to particle B, even if it is on another planet.

Einstein referred to this connection as 'spooky'."

Einstein thought this connection violated the relativity rule that information can't travel faster than the speed of light. Adami and Dr. Robert Gingrich, also of JPL, are the first to apply Einstein's relativity theory to quantum entanglement between particles.

They compared the amount of entanglement when the particles were at rest to when they were given a boost. Their findings show that while speeding up ordinary entangled pairs would lead to a loss of the precious entanglement, certain special pairs can be created whose entanglement is increased instead. This increases the connection between them.

Understanding how some of the characteristics of a particle can become entangled through relative motion alone when they seemed to be unentangled or unconnected when at rest could have many applications.

For example, entangled particles could be used to synchronize atomic clocks, which are essential for navigating spacecraft in deep space.

"One of the amazing things about entanglement is that it connects objects over arbitrary distances, so that in principle the two clocks could be started and stopped simply by acting on only one of them," said Adami. "However, no workable protocol has been found to date to achieve that."

Because the creation of entanglement in the laboratory is usually a delicate matter, discovering new ways to create entanglement is always a goal of the quantum technology community.

"If you can create entanglement just by moving with respect to what you're measuring, then seemingly you've created something from nothing," said Gingrich.

Another possible application of entanglement is quantum teleportation: the ability to transfer the precise quantum state of one microscopic object to another, while using only traditional communications, such as a phone line.

This technique, which has been demonstrated experimentally, requires that the sender and receiver share pairs of entangled particles. But until now nobody knew what would happen to these pairs if the sender and receiver move with respect to each other, or if an observer moves with respect to them. This new theory gives researchers a whole new outlook on what happens to particle pairs when you apply the relativity theory.

The research also has ramifications for ongoing work in the area of quantum computation, which seeks to use the subtle effects of quantum mechanics to build faster and more efficient computers.

"Whenever new ground is treaded by theory, new applications are sure to follow in its wake," said Adami.

Gingrich and Adami's findings appeared in a paper they co-authored titled, "Quantum Entanglement of Moving Bodies," which appeared in the December 2002 issue of the journal Physical Review Letters.

Related Links
Quantum Computing Technologies
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Astronomers Deal Blow To Quantum Theories Of Time, Space, Gravity
Huntsville - Mar 28, 2003
For the second time in as many months, images gathered by the Hubble Space Telescope (HST) are raising questions about the structures of time and gravity, and the fabric of space.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.