. 24/7 Space News .
What's Inside a Comet? Brown Geologist Helps NASA Find Out

Peter Schultz, Professor of Geological Sciences. Schultz, a leading expert in impact cratering, is a partner in the Deep Impact mission.
Providence RI (SPX) Jun 24, 2005
When comet Tempel 1 collides with a NASA space probe in the early morning hours of July 4, 2005, scientists at the Jet Propulsion Laboratory expect some holiday sizzle � a brilliant flash and a dramatic spray of debris.

This cosmic collision will create a crater exposing Tempel 1's interior. Like all comets, Tempel 1 consists of the frozen remains of material that formed the solar system. But what, precisely, is this stuff? How is it put together? Peter Schultz, crater expert, will help find out.

Schultz is a professor of geological sciences at Brown University and a leading expert in impact cratering, the science of what happens when a massive, fast-moving cosmic train slams into something.

His work helps explain when and how comets, asteroids and other space travelers shaped the face of planets such as Earth and Mars, as well as the Moon and other satellites.

Schultz's expertise landed him a spot in the inner scientific circle for "Deep Impact," the joint space mission coordinated by the Jet Propulsion Lab and the University of Maryland.

Schultz is one of 13 co-investigators overseeing the mission, which will provide a first-ever look inside a comet when scientists release an impactor into Tempel 1's path for a planned collision.

"This is heady stuff," Schultz said. "The ice inside comets has been in the deep freeze since the creation of the solar system. Now we are finally going to see what this stuff looks like and what it is made of. This is important information. Comets may have been the messengers that carried the ingredients of life to Earth."

To prepare for the mission, Schultz ran dozens of experiments at NASA's Ames Vertical Gun Range in California. Using a machine three stories tall, Schultz fired marble-size beads into surfaces of dust, ice and snow.

The beads � which travel more than 10 times faster than a speeding bullet � made craters of all shapes and sizes. Working with different combinations of ice, snow and dust in various thicknesses, Schultz recorded the trajectory of flying debris as well as crater size and speed of formation.

These observations will be important for Deep Impact. Cameras and an infrared spectrometer aboard an orbiter will record the Tempel 1 collision, relaying images and data during creation of the crater which can be used to determine the comet's composition.

"We know comets are like dirty snowballs," Schultz said. "But is the crust thick or thin? Is the interior light or dense? By running these scenarios, we can make better predictions when the real impact happens.

"Comets were made 4.5 billion years ago, yet remain such mysteries," he said. "Now we're going to get our closest look at one. That's why this project is cool."

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Cornell Grad Dan Maas Creates Deep Impact Animation For NASA
Ithaca NY (SPX) Jun 23, 2005
No one really knows what will happen when a probe from NASA's Deep Impact spacecraft collides with the comet Tempel 1 in the early morning hours of July 4.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.