. 24/7 Space News .
Livermore Create Highest Resolution Global Climate Map To Date

Wintertime precipitation in the U.S. in the observational data set and as simulated by the climate models at three different resolutions: 300 km, 75 km, and 50 km. As the model resolution becomes finer, the results converge towards observations.
Livermore - Jul 11, 2002
Atmospheric scientists from Lawrence Livermore National Laboratory have performed the first global climate simulations with spatial resolutions of roughly 50 km (30 miles). This capability will be used to assess climate change and its societal impacts.

Typical global climate simulations use spatial resolutions of about 300 kilometers (186 miles), which limits their ability to simulate climate and climate change on a regional scale. For example, with these lower resolutions it is difficult to assess climate changes, and the resulting societal impacts, in the climatically varying regions within California.

The high-resolution global climate simulations were run on a number of large computers at LLNL and on two machines at the Department of Energy's National Energy Research Supercomputer Center (NERSC).

The 50 km global model has 32 times more grid cells and requires about 200 times more computer processing time than comparable models at 300-km resolution.

"While higher resolutions have been used in weather prediction simulations before, those typically only cover several days," said Philip Duffy, group leader of LLNL's Climate System Modeling Group in the Atmospheric Science Division and key author of a paper on the subject. "Livermore's climate simulations span years."

A two-part paper describing the results has been submitted to Climate Dynamics. Co-authors include LLNL researchers Bala Govindasamy, Jose Milovich, Karl Taylor, Michael Wehner and Starley Thompson.

The high-resolution global climate simulations have been funded in part by the LLNL Laboratory-Directed Research and Development (LDRD) Program, and in part by the DOE's Climate Change Prediction Program.

The 50-km resolution simulations more closely mirror the present climate than do comparable coarse-resolution simulations, Duffy said. Researchers from Livermore's Program for Climate Model Diagnosis and Intercomparison (PCMDI) compared the high-resolution present climate simulations to observations and to results of simulations at coarse resolution (300 km).

They found significantly more agreement between the model results and observations, indicating that increasing the resolution brings very significant improvements in the model's ability to simulate large-scale features of climate.

To show the effects of greenhouse gases on future climate, Livermore researchers ran models at 300-km and 75-km resolutions. Because they represent a possible future climate, the model results cannot be evaluated by comparing them to observations. The results indicate that globally averaged climate changes are very similar in the 75-km and 300-km models. However predicted climate changes in specific geographical regions can be very different at the finer resolution.

"Our higher resolution global climate simulations can be used to provide information on many of the most important societal impacts of climate changes, such as the impacts on waster resource management, agriculture and human health," Duffy said. "We hope to improve the realism of the models and produce better predictions of future climate on both global and regional scales."

Related Links
Lawrence Livermore National Laboratory
National Energy Research Supercomputer Center
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Computer Model Promises Detailed Picture of Worldwide Climate
Boulder - Jul 04, 2002
Capping two years of research, a nationwide group of over 100 scientists has created a powerful new computer model of the Earth's climate. The model surpasses previous efforts by successfully incorporating the impact of such variables as ocean currents and changes in land-surface temperatures.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.