. 24/7 Space News .
Harvard Scientists Create High-Speed Integrated Nanowire Circuits

A flexible plastic substrate containing arrays of nanowire devices. The devices do not degrade under the effect of bending. Credits: Lieber Research Group.
Cambridge MA (SPX) May 2, 2005
Chemists and engineers at Harvard University have made robust circuits from minuscule nanowires that align themselves on a chip of glass during low-temperature fabrication, creating rudimentary electronic devices that offer solid performance without high-temperature production or high-priced silicon.

The researchers, led by chemist Charles M. Lieber and engineer Donhee Ham, produced circuits at low temperature by running a nanowire-laced solution over a glass substrate, followed by regular photolithography to etch the pattern of a circuit.

Their merging of low-temperature fabrication and nanowires in a high-performance electronic device is described this week in the journal Nature.

"By using common, lightweight and low-cost materials such as glass or even plastic as substrates, these nanowire circuits could make computing devices ubiquitous, allowing powerful electronics to permeate all aspects of living," says Lieber, the Mark Hyman Jr. Professor of Chemistry in Harvard's Faculty of Arts and Sciences.

"Because this technique can create a high-quality circuit at low temperatures, it could be a technology that finally decouples quality electronics from single crystal silicon wafers, which are resilient during high-temperature fabrication but also very expensive."

Lieber, Ham and colleagues used their technique to produce nanowire-based logical inverters and ring oscillators, which are inverters in series.

The ring oscillator devices, which are critical for virtually all digital electronics, performed considerably better than comparable ring oscillators produced at low temperatures using organic semiconductors, achieving a speed roughly 20 times faster.

The nanowire-derived ring oscillators reached a speed of 11.7 megahertz, outpacing by a factor of roughly 10,000 the excruciatingly slow performance attained by other nanomaterial circuits.

"These nanowire circuits' performance was impressive," says Ham, assistant professor of electrical engineering in Harvard's Division of Engineering and Applied Sciences.

"This finding gives us confidence that we can ramp up these elementary circuits to build more complex devices, which is something we now plan to do."

Lieber and Ham say these functional nanowire circuits demonstrate nanomaterials' potential in electronics applications.

The circuits could be used in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays, the scientists write in Nature; on a larger scale, such circuits could provide a foundation for more complex nanoelectronics.

The technique Lieber and Ham used to produce a nanowire-based circuit on a glass substrate is also compatible with other commonplace materials such as plastics, broadening its potential applicability.

Related Links
Lieber Research Group
Harvard University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Future computer: Atoms Packed In An "Egg Carton" Of Light?
Columbus OH (SPX) Apr 26, 2005
Scientists at Ohio State University have taken a step toward the development of powerful new computers - by making tiny holes that contain nothing at all.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.