. 24/7 Space News .
Venezuela Diamonds Have Deep Oceanic Origin

The image of the diamond was captured through a high-resolution imaging technique called cathodoluminescence. The sample was 2 mm across and called the 'Picasso' diamond because of its cubist appearance. The black spots are inclusions of coesite and other minerals. Image by D. Schulze
by Lanna Crucefix
Toronto - May 19, 2003
More than just symbols of wealth and beauty, diamonds are a testament to the history of the earth, says U of T professor Daniel Schulze.

Schulze, a professor in the Department of Geology at the University of Toronto at Mississauga, believes that the materials that form the gem diamonds mined in Guaniamo, Venezuela, originated on the ocean floor and has found hard evidence that supports this controversial theory. The study is published in the May 1 issue of Nature.

The diamond formation process begins, Schulze explains, when the mantle -- the interior layer between the earth's core and its crust -- forces lava up onto the ocean's floor. The lava then solidifies into a volcanic rock called basalt. When the basalt interacts with sea water, its oxygen composition changes. "The volcanic rocks are altered to form new minerals. It's like the steel in your bicycle changing to rust in the rain," he says.

Geological processes then thrust this altered basalt under the earth's continental plates where heat and pressure turn the basalt into eclogite -- beautiful red and green rocks that may contain diamonds, if carbon is present. Over time, as the eclogite remains in the mantle, it eventually takes on the oxygen composition found in this environment.

"This process can erase or modify past evidence of the ecolgite's oceanic origins," says Schulze. "But because diamonds [contained within the eclogite] are impermeable, they act as 'time capsules,' preserving inside themselves a record of conditions that existed during diamond formation."

In his study, Schulze and his team developed a new procedure using an ion microprobe to analyze tiny minerals, called coesite, in the diamonds. They compared these minerals to those in ocean-altered basalts and mantle eclogite, finding the coesite's oxygen composition a close match to that of the altered basalt, rather than the eclogite. "This proves these diamonds have an oceanic heritage," he says.

This analysis also explains why mantle eclogites have an unusual oxygen composition compared to the surrounding mantle. "Although, over time, the eclogite assumes most of the mantle's oxygen characteristics, it may not have completely lost the oxygen composition it inherited as ocean-altered basalt," says Schulze.

In addition, these particular diamonds, he says, seem to have "biogenic" carbon signatures, indicating that some of the carbon that formed the diamonds originally was living, such as ancient sea floor bacteria.

"Attached to the altered basalts, this carbon would have, in essence, gone along for the ride as the rock was thrust under the continents." Heat and pressure would have turned the organic carbon into pure carbon in the form of graphite and, then finally, into diamond.

Studying diamonds is one of the only ways scientists can learn not only about what is found deep beneath the earth's crust but the history of the early earth and environmental conditions when the diamonds were formed. "These tiny time capsules have indeed provided the 'missing link' between the mantle and the crust."

Related Links
UTM Department of Geology
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials
Arlington - Mar 25, 2003
University of Minnesota researchers have made the first-ever hardness measurements on individual silicon nanospheres and shown that the nanospheres' hardness falls between the conventional hardness of sapphire and diamond, which are among the hardest known materials.

Diamonds Tell How Old Continents May Have Formed
 Washington - Sep 10, 2002
Diamonds are much more than just pretty gemstones. Scientists have found that these valuable minerals, and the smaller minerals sometimes included in them, can reveal the details of how and when the oldest parts of our planet formed.

Clues To Early History Of Solar System's Oldest Diamonds
Munich - August 09, 2001
Simulating implantation of noble gases into terrestrial diamond grains, scientists from the Karpov Institute for Physical Chemistry (Moscow, Russia) and the Max Planck Institute for Chemistry (Mainz, Germany) infer a sequence of events in the early life of diamonds in meteorites, the most common form of stardust available for laboratory study (Nature, August 9, 2001).



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.