. 24/7 Space News .
Addition Of Fluorine Opens Door To Hundreds Of Nanotube Derivatives

File photo of a bunch of nanotubes
Houston - Apr 16, 2002
Researchers at Rice University say fluorine -- the most reactive element in nature -- could prove to be a key in unlocking the potential of carbon nanotubes and other carbon nanostructures.

Rice chemists are presenting research at this week's annual meeting of the American Chemical Society in Orlando, Fla., that describes groundbreaking work in the fluorination of polyfullerenes, groupings of C-60 molecules that have been joined together in polymer chains and planes.

Polyfullerenes are much more stable than organic polymers like polyethylene, polypropylene or nylon, and the addition of fluorine to the polyfullerenes could make it easier for chemists to use them in subsequent chemical reactions.

The Rice research is a collaboration with scientists at the Russian Academy of Science's Institute for High-pressure Physics near Moscow. The Russian researchers � Dr. V. A. Davydov and co-workers - created the polymeric fullerenes using a process involving temperatures up to 500� Celsius, and pressures up to 60,000 atmospheres.

At Rice, researchers � Faculty Fellow Valery Khabashesku and Graduate Student Zhenning Gu - fluorinate the polyfullerenes, using techniques pioneered over the past three years in the fluorination of carbon nanotubes.

"Compared to other methods of forming derivatives of carbon nanostructures, fluorination leads to reactions that are more general in nature and more easily extrapolated to a macro or production scale," said John Margrave, Butcher Professor of Chemistry.

Since their discovery in 1991, scientists have speculated that carbon nanotubes could be used for everything from biological probes small enough to penetrate a living cell to wires in computer chips that are 100 times smaller than anything available with today's technology.

But carbon nanotubes are also inert and chemically stable, which has made it difficult for chemists to create nanotube derivatives -- tubes decorated with extra molecules that act as chemical "handles" for further manipulation.

Most processes that laboratory researchers have used to create nanotube derivatives are impractical on a macro scale because they involve the use of extremely high temperatures, high pressures or other techniques that are difficult to reproduce in a production setting.

Fluorine, which is often shunned by chemists because of its highly reactive nature, has proven to be very useful as an alternative means of creating nanotube derivatives, precisely for that reason. The addition of fluorine opens the door to subsequent chemical reactions, giving chemists the ability to attach other types of molecules to nanotubes.

So far, Margrave and his colleagues have used this process to create dozens of "designer" nanotube derivatives. These include hydrotubes, which contain hydrogen in an activated form; hexyl nanotubes, methoxy nanotubes, amido nanotubes, and other varieties containing organic side chains; polymers similar to nylon; and hydrogen-bonded nylon analogs. Unlike pure carbon nanotubes, all these derivatives are soluble in traditional organic solvents.

Potential applications for the nanotube derivatives are still being identified, but hydrotubes, which contain hydrogen in an activated form, might find a use as an ultra efficient fuel, and silicate-coated nanotubes could be used in nanoscale electronic devices.

Related Links
Rice University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Carbon Nanotubes Grow Up, Out, and In All Three Dimensions
Troy - Apr 04, 2002
Next-generation computer chips, integrated circuits, and the micro electro-mechanical (MEMS) devices that power them depend upon carbon nanotubes that can be grown up, down, sideways, and in all three dimensions. Researchers at Rensselaer are the first to achieve this unprecedented, specific, and controlled nanotube growth.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.