. 24/7 Space News .
New Study Shows How Black Holes Get Their "Kicks"

illustration only
Rochester - Feb 09, 2004
When black holes collide, look out! An enormous burst of gravitational radiation results as they violently merge into one massive black hole. The "kick" that occurs during the collision could knock the black hole clear out of its galaxy.

A new study describes the consequences of such an intergalactic collision.

Astrophysicist David Merritt, professor at Rochester Institute of Technology, and co-authors Milos Milosavljevic (Caltech), Marc Favata (Cornell University), Scott Hughes (Massachusetts Institute of Technology) and Daniel Holz (University of Chicago) explore the consequences of kicks induced by gravitational waves in their article, "Consequences of Gravitational Radiation Recoil," recently submitted to the Astrophysical Journal and posted online here.

Virtually all galaxies are believed to contain supermassive black holes at their centers. According to current theory, galaxies grow through mergers with other galaxies. When two galaxies merge, their central black holes form a binary system and revolve around each other, eventually coalescing into a single black hole. The coalescence is driven by the emission of gravitational radiation, as predicted by Einstein=B9s theory of relativity.

Merritt and his colleagues determined how fast a black hole has to move to completely escape a galaxy's gravitational field. They found that larger and brighter galaxies have stronger gravitational fields and would require a bigger kick to eject a black hole than the smaller systems. Likewise, less forceful impacts could jar the black hole out of its home at the center of a galaxy, only to later rebound back into position.

The kicks also call into question theories that would grow supermassive black holes from hierarchical mergers of smaller black holes, starting in the early universe. "The reason is that galaxies were smaller long ago, and the kicks would easily have removed the black holes from them," Merritt says.

According to Merritt and his co-authors, it's more likely that supermassive black holes attained most of their mass through the accretion of gas and that mergers with other black holes only took place after the galaxies had reached roughly their current sizes.

"We know that supermassive black holes exist at the centers of giant galaxies like our own Milky Way," says Merritt. "But as far as we know, the smaller stellar systems do not have any black holes. Perhaps they used to, but they were kicked out."

The kick --a consequence of Einstein's relativity equations- occurs because gravitational waves emitted during the final plunge are anisotropic, producing recoil. The effect is maximized when one black hole is appreciably larger than the other one.

While astrophysicists have been aware of this phenomenon since the 1960s, until now no one has had the analytical tools necessary to accurately calculate the size of the effect. The first accurate calculation of the size of the kicks was reported in a companion paper by Favata, Hughes and Holz.

Merritt notes that there is no clear observational evidence that the kicks have taken place. He contends that the best chance of finding direct evidence would be locating a black hole shortly after the kick occurs, perhaps in a galaxy that has recently undergone a merger with another galaxy.

"You would see an off-center black hole that hasn't quite made its way back to the center yet," he says. "Even though the probability of observing this is low, now that astronomers know what to look for, I wouldn't be surprised if someone finds one eventually."

Related Links
Rochester Institute of Technology
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Squirty Star Imitates Black Hole
Canberra - Jan 19, 2004
Scientists using CSIRO's Australia Telescope Compact Array, a radio synthesis telescope in New South Wales, Australia, have seen a neutron star spitting out a jet of matter at very close to the speed of light. This is the first time such a fast jet has been seen from anything other than a black hole.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.