Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Sunlight makes asteroids spin in strange ways

This figure shows shape models and north pole directions (arrows) for 10 Koronis family asteroids observed by Steve Slivan (Massachusetts Institute of Technology). The numbers shown identify these objects for astronomers. The poles of the four objects on the right side are pointing in the same direction, and their spin rates are almost identical. The remaining objects are either spinning very fast or very slow and have spin poles that, while not the same, do point in similar directions. The spin states of both groups appear to be the result of their exposure to sunlight over billions of years. Note that a Galileo spacecraft image of asteroid (243) Ida and its tiny moon Dactyl (left side, third from top) has been included. For scale, the largest asteroid (208) in the middle is about 25 miles across. Icarus image
Boulder - Oct 27, 2003
A new study by researchers at Southwest Research Institute (SwRI) and Charles University (Prague) has found that sunlight can have surprisingly important effects on the spins of small asteroids. The study indicates that sunlight may play a more important role in determining asteroid spin rates than collisions, which were previously thought to control asteroid spin rates. Results will be published in the Sept. 11 issue of Nature.

David Vokrouhlicky (Charles University), David Nesvorny and William Bottke (both of the SwRI Space Studies Department) conducted the study, which showed that sunlight absorbed and reemitted over millions to billions of years can spin some asteroids so fast they could potentially break apart. In other cases, it can nearly stop them from spinning altogether. The team even noted that the effects of sunlight, combined with the gravitational tugs of the planets, can slowly force asteroid rotation poles to point in the same direction.

Until recently, researchers thought asteroid impacts controlled the rotation speed and direction of small asteroids floating in space. The unusual spin states of 10 asteroids observed by Stephen Slivan, a researcher at the Massachusetts Institute of Technology, however, have cast doubt on this idea. Slivan's asteroids, the first in the 15- to 25-mile-diameter range to have their spins extensively studied, are in the so-called Koronis asteroid family, a cluster of asteroid fragments produced by a highly energetic collision billions of years ago. Slivan found that not only do four of these asteroids rotate at nearly the same speed, but they also have spin axes that point in the same direction.

"The data clearly show that the spin vector alignment is real, but how they got that way has been a big puzzle," says Slivan. "I'm delighted that others find this to be an interesting problem."

"To picture just how weird these asteroids really are, imagine you were handed a box of spinning tops just as you were about to launch aboard the space shuttle. Given all the shaking produced by the launch, you would expect the tops to have different spin speeds and orientations by the time you reached orbit," says Bottke. "Instead, imagine your surprise upon opening the box if the tops were all spinning at the same speed and had their handles pointing toward the constellation Cassiopeia. Now increase the size of the tops by a factor of a million and pretend that the bouncing during launch is equivalent to billions of years of asteroid collisions. This is the strange situation we find ourselves with."

The remaining six asteroids studied by Slivan either have extremely slow spin rates, such that they rotate slower than the hour hand of a clock, or very fast spin rates, such that they are near the limit beyond which loose material on the surface of an asteroid would fly off.

"One would expect that collisions would have randomized these rotation rates. It was a big surprise to find a cluster of asteroids with such odd spin states," says Nesvorny.

To explain the spin states of Koronis family asteroids, Vokrouhlicky, Nesvorny and Bottke investigated how asteroids reflect and absorb light from the sun and reradiate this energy away as heat. They found that while the recoil force produced by the reradiation of sunlight is tiny, it can still substantially alter an asteroid's rotation rate and pole direction if it has enough time to act.

"Like the story about the tortoise and the hare, slow and steady sunlight wins the race over the fast-acting, but less effective, jolt of collisions between asteroids. Sunlight in space never stops," says Bottke, "and most asteroids have been exposed to a lot of it because of their age."

Using computer simulations, the team showed that sunlight has been slowly increasing and decreasing the rotation rates of Koronis family asteroids since they were formed 2 to 3 billion years ago. More remarkably, they found that some simulated asteroids were captured into a special spin state that forced the wobble of the asteroid's spin axis (produced by gravitational perturbations from the sun) to "beat" at the same frequency as the wobble of the asteroid's orbit (produced by gravitational perturbations from the planets). This state, called a spin-orbit resonance, can drive an asteroid's rotation rate and spin axis to particular values.

"These results give us a new way to look at the asteroids," says Vokroulicky. "It is our hope that this work will stimulate observational studies into many different regions of the main asteroid belt. We have only scratched the surface of this interesting problem."

Related Links
Southwest Research Institute (SwRI) News
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Arecibo Radiotelescope Identifies Hermes As Binary Asteroid
Arecibo - Oct 24, 2003
An asteroid that has eluded astronomers for decades turns out to be an unusual pair of objects traveling together in space, a planetary scientist using the National Science Foundation's (NSF) Arecibo Observatory radio telescope and his colleagues report.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.