. 24/7 Space News .
Simulations Of Collisions Shed Light On The Internal Structure Of Asteroids

The formation of an asteroid family results from the break-up of such a body, which creates hundreds of thousands of fragments, certain of which could become dangerous asteroids and meteorites.
Nice - Mar10, 2003
An international team of researchers led by Patrick Michel at the Observatoire de la C�te d'Azur in Nice, France have carried out simulations of asteroid collisions. For the first time, such simulations have made it possible to provide information about the internal structure of asteroids and, in particular, have shown that the parent bodies from which asteroid families have originated must have been fragmented (and non-monolithic) bodies or stacked rocks.

The formation of an asteroid family results from the break-up of such a body, which creates hundreds of thousands of fragments, certain of which could become dangerous asteroids and meteorites.

These findings also show that the impact energy during a collision is highly dependent upon the internal structure of the target; this information is very useful for the development of a strategy of defense against the threat of an impact with the Earth.

The researchers' results are published in the February 6, 2003, issue of Nature and are featured on the journal's cover.

In the asteroid belt, which is located between Mars and Jupiter, asteroid families are concentrated groups of small bodies that share the same spectral properties.

More than 20 families have been identified, each family believed to be fragments resulting from the break-up of a large parent body in a regime where gravity, more than the material strength of the rock, is the key factor.

The actual size and velocity distributions of the family members provide the main constraint for testing our understanding of the break-up process in this gravitational context. A new asteroid family, which bears the name of its largest member, Karin, was recently identified and studied.

It is the youngest family discovered to date, and appears to have resulted from a collision around 5 million years ago. This family provides a unique opportunity to study a collisional outcome that is relatively unaffected by phenomena such as collisional erosion and the dynamic diffusion of fragments, which, over time, alter the properties resulting directly from the collision.

Patrick Michel of the Cassini Laboratory (Observatoire de la C�te d'Azur � CNRS) and two of his colleagues from the Universities of Bern (Switzerland) and Maryland (USA), have developed numerical simulations of collisions with the aim of determining the classes of events that make it possible to reproduce the main characteristics of the Karin family.

As the results depend to a large degree on the internal structure of the parent body, they were able to show that this family must have resulted from the break-up of a body that was originally full of fracture and/or empty zones, rather than a purely monolithic body.

Their findings moreover indicate that all the members of this family are aggregates formed by the gravitational re-accumulation of smaller fragments, and that certain of them could have been ejected on trajectories that cross the Earth's trajectory. Since those families that are already known and the oldest families share similar properties, the authors suggest that they are likely to have had a similar history.

This information concerning the internal structure of large asteroids also has consequences for the impact energy that would destroy them. This is useful not only to estimate the lifetime of these objects in the asteroid belt, but also in order to develop strategies that aim to redirect such a potentially dangerous asteroid.

Related Links
Centre National de la Recherche Scientifique
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Recent Asteroid Breakup Event Detected In Main Belt
Boulder - June 13, 2002
A new study at Southwest Research Institute (SwRI) has identified a recent asteroid breakup event in the main asteroid belt. Computer simulations have shown that the event occurred 5.8 million years ago, when a 15-mile-wide asteroid in the main belt region shattered into numerous fragments following a collision.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.