Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Aerobraking By The Numbers
by James E. Kloeppel
 Champaign - December 2, 1999 - Future spacecraft may use a planet's atmosphere to generate aerodynamic forces that modify the crafts' orbits without using fuel. University of Illinois researchers have developed a numerical technique that can optimize the paths of these aero-assisted orbital transfer vehicles.

"Today's spacecraft use propellant-powered thrusters to move from one orbit to another," said Bruce Conway, a professor of aeronautical and astronautical engineering. "But each pound of fuel carried aloft means a corresponding reduction in the weight of the mission payload. A next-generation spacecraft may switch orbits at a substantial fuel savings by dipping into the atmosphere, generating aerodynamic lift and drag on airplane-like control surfaces, and then climbing to a new orbit."

The concept is similar to aerodynamic braking, a technique that uses a planet's atmosphere to reduce the speed of a space vehicle. Aerodynamic braking was used successfully for the Mars Global Surveyor mission, currently in orbit around the red planet.

"It would have been far too costly to send that spacecraft to Mars with all the necessary fuel to place it in the desired orbit through a prolonged 'burn,' " Conway said. "Instead, the mission planners placed the spacecraft in a more accessible but highly elliptical orbit, and used aerodynamic braking to slowly circularize the orbit. The procedure took several months to complete, but required little fuel."

In much the same fashion, aero-assisted orbital transfer vehicles could use a planet's atmosphere to change the altitude, shape or plane of their orbits. Applications in Earth orbit include atmospheric sampling, satellite repair missions, surveillance and missile interception.

In a paper published in the September-October issue of the Journal of Guidance, Control, and Dynamics, Conway and graduate student Kazuhiro Horie applied a new numerical method they developed at the university.

"Optimal trajectories were found for the interception of a target in low-Earth orbit by a vehicle initially in a higher orbit, using aero-assist," Conway said. "We obtained solutions for a wide range of target orbit inclinations and constraints, such as maximum allowed heating rates. We also found that our method could solve problems with demanding constraints that conventional methods could not."

Using aero-assist made some interceptions possible that otherwise were infeasible because the spacecraft carried insufficient fuel. But an interesting and non-intuitive result was that in some cases, even if the spacecraft had enough fuel to intercept the target without entering the atmosphere, using a combination of conventional propulsion and aero-assist yielded a quicker interception.

"Unlike other methods, our technique is particularly well-suited for solving problems where many complicated constraints are placed on the trajectory," Conway said. "Our numerical method looks first for any trajectory that starts with the given conditions and satisfies the desired goal, then it optimizes that trajectory for the best possible solution."

  • University of Illinois at Urbana-Champaign

    Surveyor Completes AeroBraking
     Pasadena - February 4, 1999 - For the first time a spacecraft has successfully obtained a stable circular orbit using aerobraking as the primary method for deceleration. At 12.11am Feb 4, Surveyor fired its main engine raising its orbit completely out of the Martian atmosphere marking the end of the aerobraking phase and the start of the primary mapping mission.

    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

    SpaceDaily Contributor
    $5 Billed Once

    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly

    paypal only

    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.